CSE 421: Introduction
to Algorithms

Terminology: Complexity

Yin-Tat Lee

Administrativia Stuffs

HW1 is out.
Please submit to Gradescope

J

E
Guidelines:
* You can collaborate, but you must write solutions on your own
 You CANNOT search the solution online
« See Ed for more guidelines.

Tips:

* Rewrite your proof.

« Make sure you use assumptions of the problem
 Make sure it is easy to understand

Algorithm:
Exceptions (not limited to):
If possible, reduce the question into a solved problem,
For example, for stable matching, explain
 What “man” and “woman” are corresponding to
What their preference are.
How convert the stable matching to what we
asked in the question.
Runtime:
 If the algorithm is similar to one in the class,
Simply explain the difference.
Make sure your description is not ambiguous.
Correctness:
3

More

Definition for Efficiency in This Course

Worst case complexity:
The worst case running time T (n) of an algorithm is
max # steps algorithm takes on any input of size n.

Definition of 1 step in this course:

« only simple operations (+,*,-,=,if,call,...).

« each operation takes one time step.

 each memory access takes one time step.

* no fancy stuff (add two matrices, copy long string,...).

Definition of efficiency in this course:
An algorithm is efficient if it has polynomial worst case runtime.

Time Complexity on Worst Case Inputs

Time

Problem size N

O-Notation

Given two positive functions f and g

e f(n)=0(gn))ifthereisaconstantC > 0 and N st
f(n) <Cg(n)foralln>N

e f(n)=Q(gn))ifthereis aconstant C > 0 and N st
f(n) =Cg(n)foralln>N

¢ f(n)=0(gMm)if f(n) =0(g(n)) and f(n) = Q(g(n)), namely
There is a constant C,C, > 0 and N st

Cigin) < f(n) < C,gn)foralln>N

Common Asymptotic Bounds

* Polynomials:
ap+a;n+ -+ agn?is 0(n?)

« Logarithms:
log, n = O(log, n) for all constants a,b > 0

« Logarithms: log grows slower than every polynomial
Forall x > 0, logn = 0(n*)

Name 4 | Complexity class ¢

constant time Data
Structures

inverse Ackermann time | CSE332

iterated logarithmic time

log-logarithmic

logarithmic time DLOGTIME

polylogarithmic time .

fractional power SUbII.near
Algorithms

linear time

"n log-star n" time

linearithmic time This

quasilinear time course

quadratic time

cubic time

polynomial time P

quasi-polynomial time QP

sub-exponential time

) - SUBEXP
(first definition)
sub-exponential time
(second definition)
exponential time E
(with linear exponent)
exponential time EXPTIME

factorial time

double exponential time | 2-EXPTIME

Running time (7T(n)) ¢

O(log™ n)

O(log log n)
O(log n)

poly(log n)

O(n) where 0 < ¢ <1
O(m)

O(n log” n)

O(n log n)

n poly(log n)
0(n?)

o(n®)

20008 1) = poly(n)
opoly(log n)

O@2™) forall € > 0
20(n)

20(n)

2poly(n)

o(n')
zgpuly(n)

Running Time

An algorithm runs in polynomial time if T(n) = n°®.
Equivalently, T(n) = 0(n%) for some constant d.

Examples of running times 4

10

log n, log(n?)

(log ny?
iz 2

n2n+5

nlog n, log n!

e
e
n?+n, n'°

n\og log n, n\og n

3

1.17, 10"

2n, 2™
n

22"

<»

Example algorithms
Finding the median value in a sorted array of numbers

Calculating (—1)"

Amortized time per operation using a disjoint set
Distributed coloring of cycles
Amortized time per operation using a bounded priority queuel?!

Binary search

Searching in a kd-tree
Finding the smallest or largest item in an unsorted array, Kadane's algorithm, linear search
Seidel's polygon triangulation algorithm.

Fastest possible comparison sort; Fast Fourier transform.

Bubble sort; Insertion sort; Direct convolution
Naive multiplication of two nxn matrices. Calculating partial correlation.
Karmarkar's algorithm for linear programming; AKS primality test/4]

Best-known O(log? n)-approximation algorithm for the directed Steiner tree problem.

Contains BPP unless EXPTIME (see below) equals MA (%!

Best-known algorithm for integer factorization; formerly-best algorithm for graph isomorphism

Solving the traveling salesman problem using dynamic programming

Solving matrix chain multiplication via brute-force search
Solving the traveling salesman problem via brute-force search

Deciding the truth of a given statement in Presburger arithmetic

Why “Polynomial™?

Point is not that n2%90 |s a practical bound, or that the
differences among n and 2n and n? are negligible.

detailed analysis

shift to a more tractable variant

A
Ex

“My problem is in P” is a starting point for a more

“My problem is not in P” may suggest that you need to

| Year/Authors | Steps |
1989/Dyer-Frieze-Kannan [6) n
1990 /Lovasz-Simonovits [18] n'®
1990/Lovész [17] nto
1991 /Applegate-Kannan [2] nt?
1990/Dyer-Irieze [5] n®
1993 /Lovész-Simonovits [19] n’
1997 /Kannan-Lovasz-Simonovits [11] n’
2003/Lovész-Vempala [20] n?
2020/YinTat,.... n’
Github Repo n*

10

Other Complexities

Average Case Complexity:
avg # steps algorithm takes

Communication Complexity:
max # communication algorithm send between servers

Space Complexity:
max # space algorithm needs

Parallel Complexity:

max length of the longest series of operations that have to be performed
sequentially due to data dependencies

11

CSE 351 Quiz

What is the cost of following operations? (in terms of cycle for CPU with 1 core)

« Compute a*b+c where a,b,c are float (throughput)
~1/16 cycles

Life is simple in 421.
Everything is O(1)

» Cost of unpredictable if (latency)
~20 cycles

» Cost of reading 1 byte from a random location in memory (latency)
~300 cycles

» Cost of reading 1 byte from a random location in a M.2 SSD (latency)
~100k cycles

» Cost of reading 1 byte from a random location in a 7200RPM harddisk (latency)
~10M cycles

» Cost of Elon posting a Twitter from Mars (latency)
~10T cycles 12

Warning

In real world, not all operations take same amount of time.

P Not all CPU operations are created equal

Operation Cost in CPU Cycles 1

o

° 101 102 10° 104 10% 10°

“Simple” register-register op (ADD,OR,etc.) El
Memory write [~1]

Bypass delay: switch between

integer and floating-point units o

“Right” branch of “if” [EX
Floating-point/vector addition EN
Multiplication (integer/float/vector)
34 |

Return error and check

L1 read
TLB miss
L2 read =n
“Wrong” branch of “if" (branch misprediction) 10-20 |
Floating-point division [10-40]
128-bit vector division

Atomics/CAS [15-30_|
C function direct call [15-30 |
Integer division [15-40 |
C function indirect call [20-50 |
C++ virtual function call ET
L3 read
Main RAM read | 100-150 |
NUMA: different-socket atomics/CAS

(guesstimate)
NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call
Thread context switch (direct costs) | 2000 |
C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

10000 - 1 million

Distance which light travels
while the operation is performed

Warning

In real world, not all memory accesses take same amount of time.

Latency Numbers Every Programmer Should Know

latency.txt
1 Latency Comparison Numbers (~2812)
2 __________________________________
3 L1 cache reference 0.5 ns
4 Branch mispredict 5 ns
5 L2 cache reference 7 ns 14x L1 cache
6 Mutex lock/unlock 25 ns
7 Main memory reference 100 ns 20x L2 cache, 280x L1 cache
8 Compress 1K bytes with Zippy 3,000 ns 3 us
9 Send 1K bytes over 1 Gbps network 10,000 ns 10 us
10 Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
11 Read 1 MB sequentially from memory 250,000 ns 250 us
12 Round trip within same datacenter 500,000 ns 500 us
13 Read 1 MB sequentially from SSD* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD, 4X memory
14 Disk seek 10,000,000 ns 10,000 us 10 ms 20x datacenter roundtrip

15 Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory, 20X SSD
16 Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

Example:
Improving Google CPU usage by 0.5% via a better hash table
https://www.youtube.com/watch?v=ncHmEUmMJZ{4

CSE 421: Introduction
to Algorithms

Terminology: Graph

Yin-Tat Lee

15

Examples:

Transportation networks
Communication networks
Internet

Social networks
Dependency networks

16

Undirected Graphs G=(V,E)
(A

4 @ Multi edges '
O

®'® |solatedNg Ces

() 7

Graphs don't Live in Flat Land

Geometrical drawing is mentally convenient, but
mathematically irrelevant:

4 drawings of a single graph:

Directed Graphs

Terminology

* Degree of a vertex: # edges that touch that vertex

« Connected: Graph is connected if there is a path
between every two vertices

« Connected component: Maximal set of connected
vertices

20

Terminology (cont’'d)

« Path: A sequence of distinct vertices
s.t. each vertex is connected
to the next vertex with an edge

* Cycle: Path of length > 2 that has
the same start and end

« Tree: A connected graph with no cycles

Exercise: Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree < 1
(Every tree has a leaf)

Proof. (By contradiction)
Suppose every vertex has degree > 2.

Start from a vertex v, and follow a path, vy, ..., v; when we are at
v; we choose the next vertex to be different from v;_;. We can
do so because deg(v;) = 2.

The first time that we see a repeated vertex (v; = v;) we get a
cycle.
We always get a repeated vertex because G has finitely many

vertices

22

Exercise: Trees and Induction

Claim: Every tree with n vertices has n — 1 edges.

Proof: (Induction on n.)

Base: n = 1, the tree has no edge

Induction: Let T be a tree with n vertices.

So, T has a vertex v of degree 1.

Remove v and the neighboring edge, and let T’ be the new
graph.

We claim T’ is a tree: It has no cycle, and it must be
connected.

So, T’ hasn — 2 edges and T has n — 1 edges.

23

Exercise: Degree Sum

Claim: In any undirected graph, the number of edges is
equal to (1/2) Xyertex » deg(v)

Pf: D vertex » deg(v) counts every edge of the graph exactly

twice; once from each end of the edge.
@/@)\@
0

@!ﬁ

Z deglv) =24+2+1+14+3+2+3+2=16
vertex v

IE|=8

24

Exercise: Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree
vertices Is even

Pf. In previous claim we showed sum of all vertex degrees
IS even. So there must be even number of odd degree
vertices, because sum of odd number of odd numbers is
odd.

4 odd degree vertices
3,4,5,6

25

Exercise: #edges

Let G = (V,E) be a graph with n = |V| vertices and m = |E]|
edges.

n(n—-1)

Claim:0<m<(3) = = 0(n?)

Pf. Since every edge connects two distinct vertices (i.e., G
has no loops)

and no two edges connect the same pair of vertices (i.e., G
has no multi-edges)

It has at most () edges.

26

Sparse Graphs

A graph is called sparse if m « n? and it is called dense
otherwise.

Sparse graphs are very common in practice
* Friendships in social network

« Planar graphs

 Web graph

O(n + m) is usually much better runtime than 0(n?).

27

Storing Graphs

Vertex set V = {v, ..., v, }.

Adjacency Matrix: A
« Forall, i,j,Ali,j] = 1iff (v, v;) €E

 Storage: n? bits 1 2 3 4
1[0 0 0 1
210 0 1 1
Advantage: 310 1 0 1
411 1 1 0

e 0(1) test for presence or absence of edges

Disadvantage:

« Inefficient for sparse graphs both in storage and edge-
access
28

Storing Graphs @

Adjacency List:
O(n + m) words

14 7
Advantage InES |
« Compact for sparse 2 F3if—]4 ’/%
. Easily see all edges A==
4 fFA1i4=2if5 37

Disadvantage
 Bad memory access
* Not good for parallel algorithms.

29

Storing Graphs @

Adjacency Array:

O(n + m) words

Advantage L[4 |

« Compact for sparse 2 184

« Easily see all edges 31—2i4

« Better for memory access s l-[1i2i3

« Better for parallel algorithms.

Disadvantage
« Difficult to update the graph

30

Storing Graphs

Implicit Representation:
f (v) outputs an iterator of neighbor of v.
Aka, f(v)->next()->next()->next()->next()

Advantage
* No space is required
ii: B
| 7 i
Disadvantage @aﬁ g/
« Mainly work for abstractly defined graph ‘ = s
/ —
i N

2,125,922,464,947,725,402,112,000 states.
31

Storing Graphs

In practice, pick the representation according to the
algorithm (depends how we want to access the graph).

In this course, we focus on asymptotic runtime.
We can simply do this:
* For each vertex, use a hash table to store its neighbors

« This gives O(1) time for many operations
Insert, Delete, Find, Next, ...

32

