CSE 421

Dynamic Programming

Yin Tat Lee
Announcement

• No Homework due this week.

• Office hour is both on Zoom and in person this and next week.
 • (As requested by some student.)

• My OH is on Monday. (Sorry that it was not clear in the website before)

• We haven’t graded the midterm. It will be done this week.
Jeremy Lin has created a time machine. Now, he knows exactly the price of GME for the next n days, which are p_1, p_2, \ldots, p_n.

Give an algorithm for Jeremy to finds the best days to buy and sell the stocks.
Weighted Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_j
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall: Greedy algorithm works if all weights are 1:
• Consider jobs in ascending order of finishing time
• Add job to a subset if it is compatible with prev added jobs.
Observation: Greedy ALG fails spectacularly if arbitrary weights are allowed:

![Diagram showing the impact of weight on the greedy algorithm](image_url)
Weighted Job Scheduling by Induction

Suppose 1, ..., \(n \) are all jobs. Let us use induction:

IH: Suppose we can compute the optimum job scheduling for \(< n \) jobs.

IS: Goal: For any \(n \) jobs we can compute OPT.

Case 1: Job \(n \) is not in OPT.
-- Then, just return OPT of 1, ..., \(n - 1 \).

Case 2: Job \(n \) is in OPT.
-- Then, delete all jobs not compatible with \(n \) and recurse.

Q: Are we done?
A: No, How many subproblems are there?
Potentially \(2^n \) all possible subsets of jobs.
Sorting to Reduce Subproblems

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

IS: For jobs 1, \(\ldots, n \) we want to compute OPT

Case 1: Suppose OPT has job \(n \).
- So, all jobs \(i \) that are not compatible with \(n \) are not OPT
- Let \(p(n) \) = largest index \(i < n \) such that job \(i \) is compatible with \(n \).
- Then, we just need to find optimal schedule for jobs 1, \(\ldots, p(n) \)

Why can’t we order by start time?
Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

IS: For jobs 1, ..., n we want to compute OPT

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not in OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., $p(n)$

Case 2: OPT does not select job n.
- Then, OPT is just the OPT of 1, ..., $n - 1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form 1, ..., i for some i
So, at most n possible subproblems.
Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Def $OPT(j)$ denote the weight of OPT solution of $1, \ldots, j$

To solve $OPT(j)$:

Case 1: $OPT(j)$ has job j.
- So, all jobs that are not compatible with j are not in $OPT(j)$.
- Let $p(j)$ = largest index $i < j$ such that job i is compatible with j.
- So $OPT(j) = OPT(p(j)) + w_j$.

Case 2: $OPT(j)$ does not select job j.
- Then, $OPT(j) = OPT(j - 1)$.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o. w.} \end{cases}$$

The most important part of a correct DP; It fixes IH
Input: \(n, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n) \).

Compute \(p(1), p(2), \ldots, p(n) \)

\[
OPT(j) \ {\{} \\
\quad \text{if} \ (\ j = 0 \) \\
\quad \quad \text{return} \ 0 \\
\quad \text{else} \\
\quad \quad \text{return} \ \max (w_j + OPT(p(j)), OPT(j - 1)) . \\
\{
\]
Recursive Algorithm Fails

Even though we have only n subproblems, if we do not store the solution to the subproblems

- we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

\[p(1) = 0, p(j) = j - 2 \]
Algorithm with Memoization

Memorization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: \(n, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \ldots f(n) \).

Compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)

1. \(M[j] = \) empty
2. \(M[0] = 0 \)

OPT(\(j \)) {
 if (\(M[j] \) is empty)
 \(M[j] = \max (w_j + \text{OPT}(p(j)), \text{OPT}(j - 1)) \).
 return \(M[j] \)
}

In practice, you may get \(\text{stack overflow} \) if \(n \gg 10^6 \) (depends on the language).
Bottom up Dynamic Programming

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Input: n, $s(1), ..., s(n)$ and $f(1), ..., f(n)$ and $w_1, ..., w_n$.

Sort jobs by finish times so that $f(1) \leq f(2) \leq \cdots f(n)$.

Compute $p(1), p(2), ..., p(n)$

$OPT(j)$ {

 $M[0] = 0$

 for $j = 1$ to n

 $M[j] = \max (w_j + M[p(j)], M[j - 1])$.

}

Output $M[n]$

Claim: $M[j]$ is value of $OPT(j)$

Timing: Easy. Main loop is $O(n)$; sorting is $O(n \log n)$.
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
j & w_j & p(j) & OPT(j) \\
\hline
0 & & & 0 \\
1 & 3 & 0 & \\
2 & 4 & 0 & \\
3 & 1 & 0 & \\
4 & 3 & 1 & \\
5 & 4 & 0 & \\
6 & 3 & 2 & \\
7 & 2 & 3 & \\
8 & 4 & 5 & \\
\hline
\end{array}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max (w_j + OPT(p(j)), OPT(j - 1)) & \text{o.w.}
\end{cases}
\]

Time

0 1 2 3 4 5 6 7 8 9 10 11

<table>
<thead>
<tr>
<th>j</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>(OPT(j))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\left(w_j + OPT(p(j)), OPT(j - 1)\right) & \text{o.w.} \end{cases}$$
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) =$ largest index $i < j$ such that job i is compatible with j.

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}
\]
$OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + OPT(p(j)), OPT(j-1) \right) & \text{o.w.}
\end{cases}$

Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j)$ = largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>$OPT(j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max (w_j + OPT(p(j)), OPT(j - 1)) & \text{o.w.}
\end{cases}
\]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max \left(w_j + OPT(p(j)), OPT(j - 1) \right) & \text{o.w.} \end{cases}$$
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max(w_j + OPT(p(j)), OPT(j-1)) & \text{o.w.} \end{cases}$$

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
Dynamic Programming

• Give a solution of a problem using smaller (overlapping) sub-problems where
 the parameters of all sub-problems are determined in-advance

• Useful when the same subproblems show up again and again in the solution.
How to recover the solution?

We can simply maintain the solution.

Input: \(n, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n) \).

Compute \(p(1), p(2), \ldots, p(n) \)

\[
\text{OPT}(j) \{
 M[0] = 0 \\
 S[0] = \{\}
 \text{for } j = 1 \text{ to } n \\
 \quad \text{if } w_j + M[p(j)] > M[j-1] \\
 \quad \quad M[j] = w_j + M[p(j)]. \\
 \quad S[j] = \{j\} \cup S[p(j)] \quad O(1) \text{ time}
 \quad \text{else} \\
 \quad \quad M[j] = M[j-1] \\
 \quad S[j] = S[j-1] \quad O(1) \text{ time}
 \}
\]

Output \(M[n] \) and \(S[n] \)

What is the runtime of this new algorithm?

Each \(S[j] \) points to some vertices of a tree.

\(\leftarrow \) We add leaf \(j \) with its parent \(S[p(j)] \).
Quiz

Jeremy Lin has created a time machine. Now, he knows exactly the price of GME for the next n days, which are p_1, p_2, \ldots, p_n.

Somehow, Jeremy doesn’t want to be labeled as greedy.

So, can you use dynamic programming to help Jeremy instead?
Let w_k be the Jeremy Lin's net worth on the k-th day. Then, we have

\[
\begin{align*}
 w_k &= w_{k-1} \times \frac{p_k}{p_{k-1}} \\
 w_k &= \max(w_{k-1} \times \frac{p_k}{p_{k-1}}, w_{k-1}) \\
 w_k &= \max(w_{k-1} + p_k - p_{k-1}, w_{k-1}) \\
 w_k &= w_{k-1} + p_k - p_{k-1} \\
 w_k &= w_{k-1} \times \max(p_k/p_{k-1}, 0)
\end{align*}
\]
Life is not easy.
Robinhood doesn’t want someone to hold $GME to the moon 🚀 🚀

Now, Jeremy can only hold $GME for at most 2 consecutive days.

So, what is the formula for w_k?

$$w_k = \max \left(w_{k-1}, w_{k-2} \frac{p_k}{p_{k-1}}, w_{k-3} \frac{p_k}{p_{k-2}} \right).$$
Knapsack Problem
Knapsack Problem

Given n objects and a "knapsack."
Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$. Knapsack has capacity of W kilograms.

Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3, 4\}$ with value 40.

Greedy: repeatedly add item with maximum ratio v_i/w_i.
Ex: $\{5, 2, 1\}$ achieves only value $= 35 \Rightarrow$ greedy not optimal.
Dynamic Programming: First Attempt

Let \(OPT(i) = \text{Max value of subsets of items } 1, \ldots, i \text{ of weight } \leq W \).

Case 1: \(OPT(i) \) does not select item \(i \)
- In this case \(OPT(i) = OPT(i - 1) \)

Case 2: \(OPT(i) \) selects item \(i \)
- In this case, item \(i \) does not immediately imply we have to reject other items
- The problem does not reduce to \(OPT(i - 1) \) because we now want to pack as much value into box of weight \(\leq W - w_i \)

Conclusion: We need more subproblems, we need to strengthen IH.
Stronger DP (Strengthening Hypothesis)

Let $OPT(i, w) = \text{Max value of subsets of items } 1, \ldots, i \text{ of weight } \leq w$

Case 1: $OPT(i, w)$ selects item i
- In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$

Case 2: $OPT(i, w)$ does not select item i
- In this case, $OPT(i, w) = OPT(i - 1, w)$.

Therefore,

$$OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i - 1, w) & \text{if } w_i > w \\
\max(OPT(i - 1, w), v_i + OPT(i - 1, w - w_i)) & \text{o.w.,}
\end{cases}$$
DP for Knapsack

Comp-OPT(i, w)
 if M[i, w] == empty
 if (i==0)
 M[i, w]=0
 else if (w_i > w)
 M[i, w]= Comp-OPT(i-1, w)
 else
 M[i, w]= max {Comp-OPT(i-1, w), v_i + Comp-OPT(i-1, w-w_i)}
 return M[i, w]

for w = 0 to W
 M[0, w] = 0
for i = 1 to n
 for w = 1 to W
 if (w_i > w)
 M[i, w] = M[i-1, w]
 else
 M[i, w] = max {M[i-1, w], v_i + M[i-1, w-w_i]}
 return M[n, W]
DP for Knapsack

If \(w_i > w \)
\[
M[i, w] = M[i-1, w]
\]
Else
\[
M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11
DP for Knapsack

Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Dynamic Programming

\[
\begin{align*}
\text{if } (w_i > w) \\
\quad M[i, w] &= M[i-1, w] \\
\text{else} \\
\quad M[i, w] &= \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\end{align*}
\]
DP for Knapsack

Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

Dynamic Programming

\[
\begin{align*}
 \text{if } (w_i > w) & \quad M[i, w] = M[i-1, w] \\
 \text{else} & \quad M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\end{align*}
\]

\[W = 11\]
DP for Knapsack

\[M[i, w] = \begin{cases}
M[i-1, w] & \text{if } w_i > w \\
\max \{M[i-1, w], v_i + M[i-1, w-w_i]\} & \text{else}
\end{cases} \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

if \(w_i > w \)
\[M[i, w] = M[i-1, w] \]
else
\[M[i, w] = \max \{ M[i-1, w], v_i + M[i-1, w-w_i] \} \]
DP for Knapsack

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

if \(w_i > w \)
\[
M[i, w] = M[i-1, w]
\]
else
\[
M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
\]

OPT: \{4, 3\}
value = 22 + 18 = 40

\(W = 11 \)
Life is not easy.
Robinhood doesn’t want someone to hold $GME to the moon 🚀 🚀

Now, Jeremy can only hold $GME for at most 2 consecutive days. and can only trade $GME for at most t times.

So, what is the best trading?
Let $w_{k,t}$ be the network at k-th day using t trades.

$$w_{k,t} = \max \left(w_{k-1,t}, w_{k-2,t-1} \frac{p_k}{p_{k-1}}, w_{k-3,t-1} \frac{p_k}{p_{k-2}} \right).$$
Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time $\text{Poly}(n)$.

UW Expert
DP Ideas so far

• You may have to define an ordering to decrease #subproblems

• You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.

• This means that sometimes we may have to use two dimensional or three dimensional induction