CSE 421

Divide and Conquer

Yin Tat Lee

Median

Selecting k-th smallest

Problem: Given numbers x4, ...,x, and aninteger 1 <k <n
output the k-th smallest number

Sel({xq, ..., x, }, k)
Can we do 0(n) for all possible values of k?

An ldea Note:

Finding w is like median

Choose a number w from x4, ..., x,, problem
Define X
o S.(w)={x;:x; <wj}

Can be computed in
e S_(W)={x;:x; =w} linear time

o SS(W) = {xx > wi

/
Solve the problem recursively as follows:

o Ifk <|Sc(w)|, output Sel(Sc(w), k)
 Elseifk <|[S.(w)|+ |S=(w)|, output w

« Else output Sel(Ss(w), k — |Sc(w)| — |S=(w)])

Ideally want [S_(w)|, |Ss(w)| < n/2. In this case ALG runs in
0(n) + 0 (g) +0 (%) +--4+0(1) =0(n).

How to choose w?

Almost correct approach:

« Partition numbers into sets of size 3.
« Sort each set (takes O(n))

e w = Sel(midpoints,n/6)

||©|©0|0|©®|®|0®|0|]|0®|0®| | 0|O®|]®|O®
viffvifivif viiv v b v v v v v v]l v
oj|o|o|0|O|O|_ ||0|O®|O®|]O®|]®|O®]|®
vilfviffvilfvifiviifvlivilivlfvifvifviiv|v]Vv
||©0|0|0|©®|0®|®| ||| 0|O®|]®|O®

Assume all numbers are distinct for simplicity.

How to lower bound [S.(w)], |Ss (w)]|?

> W

4
&
&
&
&
‘ ® <F_< “

¢ Iscw)l 22(3) =

2
< 1S<(W)], 1S (W)] < =
c 1wl 22(3) =

3

Wl S

-

WIS w|S

So, what is the running time?

Assume all numbers are distinct for simplicity.

Asymptotic Running Time?

@ <Bi< @]

. Ifk < |S.(w)|, output Sel(S-(w), k)
« Elseif k < |Sc(w)| + |S=(w)], output w
« Else output Sel(Ss(w), k — [Sc(W)| — |S=(w)|

O(nlogn) again?
So, what is the point?

Where < |S<w)L,1Sw)| < 3

2n

T(n) =T (g) + T <?> +0(n) =Tn) =0(nlogn)

Recurrences

2
e T(n) = T(%) +T(?n) +n=T(n)=0(mlogn)
The first layer cost is n.
The second layer cost is g + 2?" which is same as the first layer.

Similarly, every layer is roughly the same. Hence, it is nlogn.

Question 1: Where does the n/3 term comes from?
Question 2: How can we make it smaller?

Question 3: How to get O(n) time?

An Improved Idea

> w
ol 0| || |0 |O®
Y V v |V Vv
ol 0| 0| |O®]| |O®
Vv vV VI |Vv] |V

le<e<@ {0<0]
AN

‘Q<Q< @ < Q<Q‘
N

‘Q<Q< @ < Q<Q‘
N

‘Q<Q< @ - Q<Q‘
N

le<e <@ {0<0|
I‘F

‘Q<Q< » <Q<Q‘
<‘|

le<e@

‘Q<Q<
‘Q<Q<
le<ek
l@<@k

<w
Partition into n/5 sets. Sort each set and set w = Sel(midpoints,n/10)

¢ ScwW)|=3 3n 3 7
) '5:(Z)I23E g 3_n - = < IS WL IS (W)l < 15

T(n) = (g) (Z O) +0(n) = T(n) = 0(n)

Recurrences

e T(n) = ()+T()+n=>T(n) = 0(nlogn)
The first layer cost is n.
The second layer cost is g + 2?" which is same as the first layer.

Similarly, every layer is roughly the same. Hence, it is nlogn.

e T(n)=T ()+T()+n=>T(n)—0(n)
The first layer cost is n.

The second layer cost is % + Z—Z which is smaller than the first layer by a

constant factor.
Hence, the total cost is a geometric sum and it is O(n).

Integer Multiplication

Integer Arithmetic

Add: Given two n-bit integers
a and b, compute a + b. Add

[O (n) bit operations.]

Multiply: Given two n-bit
Integers a and b, compute a X b.
The “grade school” method:

[0(n?) bit operations.]

1 1 1 1 1 1 0 1
1 1 0 1 0 1 0
+ 0 1 1 1 1 1 0
1 0 1 0 1 0 0 1
1/1/0{1|0|1|0
*10]1|1|1{1{1|0
1/1/0{1|0|1|0
Multiply 0/{0|0|0|0|0|0(O
1/1{0(1/0|1|0|1
1/1/0{1|0|1|0|1
1(1{0(1|0|1|0|1
1/1/0|1|0|1]|0|1
1/1(0(1/0|1|0|1
0/0{0|0|0(0O|0O|O
1/1{0{1/0{0|0|0|0(0(|0(0|0]|0

Divide and Conquer

o Quiz:
Let x, y be two n-bit integers What is the recursion for T'(n)?

Write x = 2™2x; + x, and y = 2™2y, + y,
where x,, x4, v, y; are all n/2-bit integers.

x =2™2 . x, + x,
y =2"2 -y +y,
xy = (2™2 - x; +x0) (2% - y1 + y0)
= 2" x3y; + 22 - (x1y0 + Xo¥1) + X0 Y0

Therefore, We only need 3 values
n X1Y1,X0Y0, X1Yo T XoY1
T(n) =4T |=)+ ©(n) |Canwe find all 3 by only
2
3 multiplication?

So,
T(n) = 0(n?).

Key Trick: 4 multiplies at the price of 3

x =2M2. x; +x,

y =2"2-y; +y,
xy = (2™2 - x; 4+x,) (22 ,

= 2" xyyy + 27 @ + X0Yo

a = xq,+ Xy
B=y1+Yo
af = (x; + x0) (Y1 + ¥o)
= x1y1 + (X1Y0 + Xoy1) + X0Y0
= (X1Y0 + Xo¥1) = af — x1y1 — XoYo

Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit
integers in O(n-98>--) bit operations.

x =2™2 . x; +x9 2 a=x; + xg
y=2"2.y, +y,=2B =y +
xy = (2% - x1 +x0) (22 - y1 + v)
= 2" - 391 + 22 - (%10 + %0Y1) + XoYo
A af —A—B B

To multiply two n-bit integers:
Add two n/2 bit integers.
Multiply three n/2-bit integers.
Add, subtract, and shift n/2-bit integers to obtain result.

T(n) =3T (g) +0n)=>Th) = O(nlogz 3) = 0(n1585-)

Integer Multiplication (Summary)

» Exercise: generalize Karatsuba to do 5 size
n/3 subproblems

This gives 0(n'*%+) time algorithm

Date Authors Time complexity
<3000 BC | Unknown O(n?)
1962 Karatsuba O(n'oe3/los2)
1963 Toom O(n2°VIeen/lo2)
1966 Schénhage O(n?2 v2logn/log2 (logn)3/?)
1969 Knuth O(n2V210en/1962 o0)
1971 Schonhage—Strassen O(nlognloglogn)
2007 Fiirer O(nlogn 20Uee™m)
2014 Harvey-Hoeven-Lecerf O(nlogn 88")
2019 Harvey-Hoeven O(nlogn)

Integer Multiplication (Summary)

1 2 3 4

5 6 7 8

8 16 24 32

7 14 21 28
6 12 18 24
510 15 20
—>5 16 34 60 61 52 32
1234 5678
Split and zero pad Split and zero pad

413|2|1|]0f(0]|0f0O g8|7|6|5[0]J]0|0]O0
101329(298|126(2 |271{ 43 |301 26|24 1298(322| 2 (8343|277

Recursive pointwise multiplication (mod 337)

260/145|173(132| 4 [251|164(138 32
Inverse FFT 6?2
—>»|32(52|61|60|34|16| 5| 0 330
Recombination (carrying) |=e— 16
Y 7006652 3@@%

Demonstration of multiplying 1234 x 5678 = 7006652 using =
fast Fourier transforms (FFTs). Number-theoretic transforms in
the integers modulo 337 are used, selecting 85 as an 8th root
of unity. Base 10 is used in place of base 2" for illustrative
purposes.

Matrix Matrix Multiplication

Multiplying Matrices

Let A be an n X m matrix, B be an m X p matrix.

a1 aip - Qim bii bz - by

a1 Q- Gy b1 by - by
A. — B —

Ol Gpg ¢ Gum bt bmz - b

Then, C = AB Is an n X p matrix

e e e
such that
m
Cij = ainbyj + -+ aimbpm; = Zaikbkj:
k=1

Question: Why matrix multiplication is defined in such way? 19

Multiplying Matrices

A, Q| A3 Ay

a'21 a'22 a23 a'24

a3 1 a‘32 a‘33 a34

O
[N
O
N
O
w
=)
IS

a'41 a42 a‘43 a'44 _

ailbll + a12b21 a13b31 + a14b41

a‘21bll T a‘22b21 a23b31 + a'24b41
a31bll + a'32bZl + a33b31 + a34b4l a‘31b12 + a‘32b22 + a‘33b32 + a'34b42

b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

a11b12 + a‘12bZZ a13b32 + a14b42
a21blZ + a‘22b22 a‘231:)32 + a‘24b42

_a4lb11 + a‘42bZl T a43bSl T a44b41 a41blZ T a42bZZ + a‘43l:)32 + a44b42

(]

(o]

(o]

o

a11b14 + a12b24 + a13b34 + a14b44
a21bl4 + a22b24 + a'23b34 + a'24b44
a'3lbl4 + a'32b24 + a33b34 + a34b44

a41b14 T a‘42bZ4 T a43bB4 + a44b44_

20

Multiplying Matrices

&y & |z Ay b, b, b, b,
Ayp Gy |Gp3 Ay o b,y by, Dy by,
d3 A3y d33 Ay by, by, [By Dby,
| 841 84y 843 Gy b, by, | by b44_
810, + 8,0y +ﬁ3b31 + a14b41J 810, + 84,0, "'\isbsz + ai4b42J o @y, +ay,0,, + a0y, +a,b,,
80y, + 8,0, + a23b31 + ag4b41 8y, + 8,00, + azsbsg + ag4b42 o Ay, T80, T80, 8,0,

a31bll + a'32bZl + a33b31 + a34b4l a‘31b12 + a‘32b22 + a‘33b32 + a'34b42
_a4lb11 + a‘42bZl T a43bSl T a44b41 a41blZ T a42bZZ + a‘43l:)32 + a44b42

(o]

a'3lbl4 + a'32b24 + a33bS4 + a34b44

o

a41b14 T a‘42bZ4 T a43bB4 + a44b44_

21

Multiplying Matrices

a, a,| & b, b, b, b,
A 22 Alam JZ?BleZ b:BB124

a a b b D 0
SA 32 33 34 B 32 BB 34
a41 2é’42 aﬁfc?\ 2244_ _b41 2b42 b43 244_

(]

al Bl ;b';:f wRam,

a'3lbl4 + a'32b24 + a33bS4 T a34b44

3@12 %%%%@%BMM_

ailbll + a12b21 T a13 iE 41 12 T a12b22 T aiSb32 + a14 42
24 41

aAE)M T 2b24 b34 + a14 44
a‘21bll + a b + a23 31 21 22+ 225'22 + a‘23b32 + a‘24b42

(o]

(o]

31b11 + a'32bZl + a33bA+ a 1 a’3 12 + 2b22 + a‘33b32 + a'34b42

+
8,00, + 8,005 + 8,0y, *25‘44 4%1 a41b1222 a42%;2 8,505, +a,0,,

o

22

Simple Divide and Conguer

Quiz:

What is the recursion for T (n)?

A | A By | By
Aoy A, By | By

A1B1tALBy | ApBio,tALB,,

Ag1B11tABs | A, BL,+A,,B,,

e T(n) =8T(n/2) +4 (2)2 = 8T (n/2) + n?
So, T(n) = 0(n'°828) = @(n3) .

Strassen’s Divide and Conquer Algorithm

« Strassen’s algorithm

Multiply 2 X 2 matrices using 7 instead of 8
multiplications (and 18 additions)

T(n) = 7T (g) + 18n?
Hence, we have T(n) = 0(n!°827).
= T| — Useful when n~500.
P
e One of the most important open problem:

| Solve matrix multiplication in 0(n%log®¥n) time

ppersmith, Winogmd Stothers
W 24

1950 1960 1970 1980 1990 2000

Strassen’s Divide and Conquer Algorithm

Naive

Ci1=A11B;11 +A12By;
Ci2=A11B12+A12B2>
Co1 =A21B;; +A:2By,
Coo =A31B12+A22Bs>

Strassen

M, := (A11 + As3)(B11 + Bas)
M, = (A2,1 + Az,z)Bl,l
M; = A1,1(Bl,2 - B2,2)
My := Ay2(By; — Bi1)
M; = (A1,1 + A1,2)B2,2
Mg := (Az1 — A11)(B11 + B12)
M; = (A2 — Az3)(B21 + B22)

Cii=M; + My — M5 + My
Ci2 = M3 + M5
Co1 =M, + My
Cioo =M; — My + M3 + Mg

25

Matrix Vector Multiplication

Matrix Vector Multiplication

Let A be an n X n matrix and an X 1 vector x.
How fast we can compute Ax?

Textbook explainsitin a
totally different way.

For general dense matrices, ©(n?).

For some special 4, nearly linear time is possible!

Two important examples are
2mijk

Fast Fourier transform: 4;; = exp(—

)

Fast multipole method: 4;; = ||v; — vj||51 for some vectors v;

n

27

from SIAM News, Volume 33, Number 4

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N things in numerical or alphabetical order is mind-numbingly mundane. The intellectual challenge lies in devising ways
of doing so quickly. Hoare’s algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element as a “pivot,” separate the rest into piles of “big” and “small” elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it’s possible to get stuck doing all M(N — 1)/2 comparisons (especially if you use as your pivot the first
item on a list that’s already sorted!), Quicksort runs on average with O(N log N) efficiency. Its elegant simplicity has made Quicksort
the pos-terchild of computational complexity.

1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of Princeton
University and AT&T Bell Laboratories unveil the fast Fourier transform.

Easily the most far-reaching algo-rithm in applied mathematics, the FFT revolutionized
signal processing. The underlying idea goes back to Gauss (who needed to calculate orbits
of asteroids), but it was the Cooley-Tukey paper that made it clear how easily Fourier
transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer
strategy to reduce an ostensibly O(N?) chore to an O(N log N) frolic. Butunlike Quick- sort,
the implementation is (at first sight) nonintuitive and less than straightforward. This in itself
gave computer science an impetus to investigate the inherent complexity of computational
problems and algorithms.

™~ Divide and

Conquer

James Cooley John Tukey

1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integer relation detection algorithm.

The problem is an old one: Given a bunch of real numbers, say x,,x,,. . .,x,,are there integers a,, a,,. . .,a,(notall 0) for which
ax,tax,+. . .+ax,=0?Forn=2,the venerable Euclidean algorithm does the job, computing terms in the continued-fraction
expansion of x,/x,. If x,/x, is rational, the expansion terminates and, with proper unraveling, gives the “smallest” integers @, and a,.
If the Euclidean algorithm doesn’t terminate—or if you simply get tired of computing it—then the unraveling procedure at least
provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade’s generalization, although much more
difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find
the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, B; = 3.544090 and B, = 3.564407,
of the logistic map. (The latter polynomial is of degree 120 its largest coefficient is 257".) It has also proved useful in simplifying
calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

This algorithm overcomes one of the biggest headaches of N-body simulations: the fact that accurate calculations of the motions
of N particles interacting via gravitational or electrostatic forces (think stars in a galaxy, oratoms in a protein) would seem to require
O(N?) computations—one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by
using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant
group of particles on a local group. A hierarchical decomposition of space is used to define ever-larger groups as distances increase.
One of the distinct advantages of the fast multipole algorithm is that it comes equipped with rigorous error estimates, a feature that
many methods lack.

Matrix Vector Multiplication (FFT)

Let E, be the n X n DFT matrix. | T() =2T(n/2) +0(n)

Then, we have

E0 F, 0 0
FZn:pl.[(")”‘ F].pz.D. 0 - 0 .p3
n 0 0 F,

for some permutation P and some diagonal D.

x[0]o—=—]

X2~ N/2- point
x[4]o—» DFT

K[6]o— -

x[1]o—w

‘B”‘*T N/2- point

X[5]0—»— DFT

x[’j"]n—l—- |

See https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey FFT algorithm for details.

29

https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm

Matrix Vector Multiplication (FMM)

Let M,, be the n x n green matrix (||v; — v;||1).

Then, we have

Moy 0 0
My,~| 0 -~ 0 |+P"M,P.
0 0 My

for some permutation P.

See htips://math.nyu.edu/~greengar/shortcourse fmm.pdf for the real stuff.

| T =Tm/2)+0n) |

30

https://math.nyu.edu/~greengar/shortcourse_fmm.pdf

