CSE 421
Introduction to Algorithms
Midterm Exam Spring 2021

DIRECTIONS:

• Answer the problems on the exam paper.

• Justify all answers with proofs (except for Problem 1), unless the facts you need have been stated or proven in class, or in Homework, or in sample-midterm.

• If you need extra space use the back of a page or two additional pages at the end

• You have 70 minutes to complete the exam.

• Please do not turn the exam over until you are instructed to do so.

• Good Luck!
1. (25 points, 5 each) For each of the following problems answer True or False (no proof needed).

(a) \(n + \log n = \Omega(n \log n) \).

(b) Every (not necessarily connected) graph with \(n \) edges has exactly one cycle.

(c) In every DAG with \(n \) vertices, for any \(1 \leq k \leq n - 1 \), there are at most \(k \) vertices with out-degree at least \(n - k \).

(d) A graph \(G \) has exactly three connected components if and only if there are exactly two cuts \((S_1, V - S_1), (S_2, V - S_2) \) of \(G \) with no edges in them (i.e., every other cut has at least one edge).

(e) The Kruskal’s algorithm runs in time \(\Theta(m \log m) \).

(f) If \(T(n) \leq 27T(n/9) + n^3 \), \(T(1) = 1 \), then \(T(n) = O(n^3 \log n) \).
2. Given a connected undirected weighted graph $G = (V, E)$ where every edge $e \in E$ has a positive integer weight w_e such that the sum of weights of all edges is at most $4m$, i.e., $\sum_{e \in E} w_e \leq 4m$, and a vertex $s \in V$, design an $O(m + n)$ time algorithm that outputs the length of the shortest path from s to all vertices of V. Recall that in a weighted graph the length of a path P with edges e_1, \ldots, e_k is $w_{e_1} + \cdots + w_{e_k}$.
3. Given sorted array of n distinct even integers, arranged in increasing order $A[1, n]$, you want to find out whether there is an index i for which $A[i] = 2i$. Give an algorithm that runs in time $O(\log n)$ and outputs “yes” if such an i exists and “no” otherwise. (Recall that an integer is even if it is a multiple of 2).
4. Show that there are at least $3 \cdot 2^{n-1}$ ways to properly color vertices of a tree T with n vertices using 3 colors, i.e., to color vertices with three colors such that any two adjacent vertices have distinct colors. Note that it can be shown that there are exactly $3 \cdot 2^{n-1}$ ways to properly color vertices of T with 3 colors but in this problem, to receive full credit, it is enough prove the “at least” part.

For example, there are (at least) $3 \cdot 2^2 = 12$ ways to color a tree with 3 vertices as show below: