
CSE 421:  Introduction 
to Algorithms

DFS - DAGs
Shayan Oveis Gharan

1



HW1 Grade
Q: I received low grade in HW1 what should I do?
• Understand what was your mistake. Did you understand 

the problem statement correctly?
• Show up to office hours and ask for hints or to explain 

your solution 
• Review materials of 311 on proofs/induction
• Do exercises from the book/Problem Solving Sessions
Q: My HW1 grade is low, will I be able to receive 4.0?
• Yes! I look at your progress. Many students are behind 

at beginning but by practice they catch up and receive 
4.0

Q: I have filled out a regrade request, but was not 
convinced, what should I do?
• Show up to my office hour and discuss your solution

2



Depth First Search

Follow the first path you find 
as far as you can go; back up 
to last unexplored edge when 
you reach a dead end, 
then go as far you can 

Naturally implemented using recursive calls or a stack

3



DFS(s) – Recursive version

Global Initialization: mark all vertices undiscovered

DFS(v) 
Mark v discovered

for each edge {v,x}
if (x is undiscovered)

Mark x discovered
DFS(x)

Mark v full-discovered

4



5

DFS(A)
A,1

B J

I

H

C

G

FD

E

K L

M

Suppose edge lists
at each vertex 
are sorted 
alphabetically

Color code:
undiscovered
discovered
fully-explored

Call Stack
(Edge list):

A (B,J)

st[] =           
{1}



6

DFS(A)
A,1

B,2 J

I

H

C

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =           
{1,2}



7

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =           
{1,2,3}



8

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =           
{1,2,3,4}



9

DFS(A)
A,1

B,2 J

I

H

C,3

G

FD,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =           
{1,2,3,4,5}



10

DFS(A)
A,1

B,2 J

I

H

C,3

G

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =           
{1,2,3,4,5,
6}



11

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

st[] =           
{1,2,3,4,5,
6,7}



12

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)
G(C,F)

st[] =           
{1,2,3,4,5,
6,7}



13

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)
F (D,E,G)

st[] =           
{1,2,3,4,5,
6}



14

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)
E (D,F)

st[] =           
{1,2,3,4,5}



15

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
D (C,E,F)

st[] =           
{1,2,3,4}



16

DFS(A)
A,1

B,2 J

I

H

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =           
{1,2,3}



17

DFS(A)
A,1

B,2 J

I

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =           
{1,2,3,8}



18

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
I (H)

st[] =           
{1,2,3,8,9}



19

DFS(A)
A,1

B,2 J

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =           
{1,2,3,8}



20

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =           
{1,2,3,8, 
10}



21

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =           
{1,2,3,8,10
,11}



22

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =           
{1,2,3,8,10
,11,12}



23

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)
M(L) 

st[] =           
{1,2,3,8,10
,11,12,13}



24

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)
L (J,K,M)

st[] =           
{1,2,3,8,10
,11,12}



25

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)
K (J,L)

st[] =           
{1,2,3,8,10
,11}



26

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =           
{1,2,3,8, 
10}



27

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)
J (A,B,H,K,L)

st[] =           
{1,2,3,8, 
10}



28

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)
H (C,I,J)

st[] =           
{1,2,3,8}



29

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)
C (B,D,G,H)

st[] =           
{1,2,3}



30

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =           
{1,2}



31

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)
B (A,C,J)

st[] =           
{1,2}



32

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

st[] =           
{1}



33

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

A (B,J)

st[] =           
{1}



34

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Color code:
undiscovered
discovered
fully-explored

Call Stack:
(Edge list)

TA-DA!!

st[] =  {}



35

DFS(A)
A,1

B,2 J,10

I,9

H,8

C,3

G,7

F,6D,4

E,5

K,11 L,12

M,13

Edge code:
Tree edge
Back edge



36

DFS(A) A,1

B,2

J,10

I,9

H,8

C,3

G,7

F,6

D,4

E,5

K,11
L,12

M,13

Edge code:
Tree edge
Back edge
No Cross Edges!



Properties of (undirected) DFS
Like BFS(s):
• DFS(s) visits x iff there is a path in G from s to x 

So, we can use DFS to find connected components
• Edges into then-undiscovered vertices define a tree –

the "depth first spanning tree" of G

Unlike the BFS tree: 
• The DFS spanning tree isn't minimum depth
• Its levels don't reflect min distance from the root
• Non-tree edges never join vertices on the same or 

adjacent levels

37



Non-Tree Edges in DFS

All non-tree edges join a vertex and one of its 
descendants/ancestors in the DFS tree

BFS tree ≠ DFS tree, but, as with BFS, DFS has found a 
tree in the graph s.t. non-tree edges are "simple" – only 
descendant/ancestor

38



Non-Tree Edges in DFS
Obs: During DFS(x) every vertex marked visited is a descendant 
of x in the DFS tree

Lemma: For every edge {𝑥, 𝑦}, if {𝑥, 𝑦} is not in DFS tree, then 
one of x or y is an ancestor of the other in the tree.

Proof:
One of x or y is discovered first, suppose WLOG that x is 
discovered first and therefore DFS(x) was called before DFS(y)

Since {𝑥, 𝑦} is not in DFS tree, y was fully-explored when the 
edge {x,y} was examined during DFS(x)

Therefore y was discovered during the call to DFS(x) so y is 
a descendant of x by observation.

39



DAGs and Topological Ordering



Directed Acyclic Graphs (DAG)
A DAG is a directed acyclic graph, i.e., 
one that contains no directed cycles.

Def:  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge 
(vi, vj) we have i < j.

41
a DAG

a topological ordering of that DAG–
all edges left-to-right

1 2 3 4 5 6 7



DAGs: A Sufficient Condition
Lemma: If G has a topological order, then G is a DAG.

Pf. (by contradiction)
Suppose that G has a topological order 1,2, … , 𝑛 and that G also 
has a directed cycle C.
Let 𝑖 be the lowest-indexed node in C, and let 𝑗 be the node just 
before 𝑖; thus (𝑗, 𝑖) is an (directed) edge.
By our choice of 𝑖, we have 𝑖 < 𝑗.
On the other hand, since (𝑗, 𝑖) is an edge and 1,… , 𝑛 is a 
topological order, we must have 𝑗 < 𝑖, a contradiction

42

1 i j n

the directed cycle C

the supposed topological order:  1,2,…,n



DAGs: A Sufficient Condition

43

G has a 
topological order G is a DAG?



Every DAG has a source node
Lemma: If G is a DAG, then G has a node with no incoming edges (i.e., 
a source).

Pf. (by contradiction)
Suppose that G is a DAG and and it has no source
Pick any node v, and begin following edges backward from v.  Since v 
has at least one incoming edge (u, v) we can walk backward to u.
Then, since u has at least one incoming edge (x, u), we can walk 
backward to x.
Repeat until we visit a node, say w, twice.
Let C be the sequence of nodes encountered between successive visits 
to w.  C is a cycle.

44

w x u v

C
w x u v

Is this similar to a 
previous proof?



DAG => Topological Order
Lemma: If G is a DAG, then G has a topological order

Pf. (by induction on n)
Base case:  true if n = 1.

IH: Every DAG with n-1 vertices has a topological ordering.

IS: Given DAG with 𝑛 > 1 nodes, find a source node v.
𝐺 − { 𝑣 } is a DAG, since deleting v cannot create cycles.

By IH, 𝐺 − { 𝑣 } has a topological ordering.
Place v first in topological ordering; then append nodes of G - { v }

in topological order. This is valid since v has no incoming edges. 

45

Reminder: Always remove 
vertices/edges to use IH



A Characterization of DAGs

46

G has a 
topological order G is a DAG



47

Topological Order Algorithm:  Example

2 3

6 5 4

7 1



48

Topological order:  1, 2, 3, 4, 5, 6, 7

Topological Order Algorithm:  Example

2 3

6 5 4

7 1

1 2 3 4 5 6 7

Induction gives Algorithms!



Topological Sorting Algorithm
Maintain the following:

count[w] = (remaining) number of incoming edges to node w
S = set of (remaining) nodes with no incoming edges

Initialization:
count[w] = 0 for all w
count[w]++ for all edges (v,w) O(m + n)
S = S È {w} for all w with count[w]=0

Main loop: 
while S not empty

• remove some v from S
• make v next in topo order O(1) per node
• for all edges from v to some w O(1) per edge

–decrement count[w]
–add w to S if count[w] hits 0

Correctness: clear, I hope
Time: O(m + n)  (assuming edge-list representation of graph)

49



DFS on Directed Graphs
• Before DFS(s) returns, it visits all previously unvisited 

vertices reachable via directed paths from s

• Every cycle contains a back edge in the DFS tree

50

forward 
edges

back edges

cross edges



Summary
• Graphs: abstract relationships among pairs of objects

• Terminology: node/vertex/vertices, edges, paths, multi-
edges, self-loops, connected

• Representation: Adjacency list, adjacency matrix

• Nodes vs Edges: m = O(n2), often less

• BFS: Layers, queue, shortest paths, all edges go to same 
or adjacent layer

• DFS: recursion/stack; all edges ancestor/descendant

• Algorithms: Connected Comp, bipartiteness, topological 
sort 51



Greedy Algorithms



Greedy Strategy

Goal:  Given currency denominations: 1, 5, 10, 25, 100, 
give change to customer using fewest number of coins.

Ex:  34¢.

Cashier's algorithm:  At each iteration, give the largest
coin valued ≤ the amount to be paid.

Ex: $2.89.

53



Greedy is not always Optimal

Observation:  Greedy algorithm is sub-optimal for US 
postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
Greedy:  100, 34, 1, 1, 1, 1, 1, 1.
Optimal:  70, 70.

Lesson: Greedy is short-sighted. Always chooses the most 
attractive choice at the moment. But this may lead to a dead-
end later.

54



Greedy Algorithms Outline

Pros
• Intuitive
• Often simple to design (and to implement)
• Often fast

Cons
• Often incorrect!

Proof techniques:
• Stay ahead
• Structural
• Exchange arguments

55


