In class we discussed a pseudo-code of BFS(s); Here I have modified the code to maintain the level of each vertex in the BFS tree, in other words, the array L[] will have the shortest path distance from s to u for any vertex u in the connected component of s.

Function BFS(s)

Initialize: mark all vertices “undiscovered’
mark s ”discovered”
queue = { s }
L[s]=0
while queue not empty do
 u = remove_first(queue)
 for each edge {u, x} do
 if x is undiscovered then
 mark x discovered
 append x on queue
 L[x]=L[u]+1
 end
 end
 mark u fully-explored
end

Algorithm 1: Computes the shortest path distance from s

Next, we write a code to determine the connected components of a graph. When we call the function Connected-Components, it will construct an array A such that for all vertices v in the same connected component A[v] is the same.

For example, consider the following graph; it has 3 connected components: {1, 3, 4}, {5}, {2, 6}. If we run the code on the following graph, we are going to make 3 BFS calls:

3) Then we call BFS(5) which visits the vertex 5 and so we get A[5] = 3.

Note that we are not going to call BFS(3), BFS(4) and BFS(6). Because by the time the main loop gets to vertices 3, 4, and 6 they are already fully-explored.
Function $BFS(s,c)$

- mark s “discovered”
- queue = { s }
- $A[s]$ = c

while queue not empty do

- u = remove_first(queue)

for each edge {u, x} do

 if x is undiscovered then

 mark x discovered
 append x on queue
 $A[x]$ = c

 end

end

mark u fully-explored

end

Function $Connected$-Components

Initialize: mark all vertices “undiscovered” and set c = 1
for v = 1 → n do

 if v is undiscovered then

 $BFS(v,c)$
 c = $c + 1$

end

Algorithm 2: Computes the Connected Components of a Graph

Also, observe that after running this code, for any pair of vertices u, v, there is a path connecting u to v in G if and only if $A[u] = A[v]$.