CSE421: Design and Analysis of Algorithms

April 11, 2022

Lecturer: Shayan Oveis Gharan
Lecture Properties of Graphs

1 In-class Exercise

1. Let G be a graph with n vertices and at least n edges. Show that G has a cycle.
2. Solution: We prove by contradiction! Suppose G has no cycle. Then,

Case 1: G is connected. Then since G has no cycles, G is a tree with n vertices. So it must have $n-1$ edges. But we said it has $\geq n$. That is a contradiction.
Case 2: G is disconnected. Suppose G has ℓ connected components with number of vertices $n_{1}, n_{2}, \ldots, n_{\ell}$ and number of edges $m_{1}, m_{2}, \ldots, m_{\ell}$.
Claim: For some i we must have $m_{i} \geq n_{i}$. Pf: For contradiction assume $m_{i}<n_{i}$ for all i. Summing up these inequalities we get $m=\sum_{i} m_{i}<\sum_{i} n_{i}=n$. But that contradicts the assumption that $m \geq n$.
So assume $m_{i} \geq n_{i}$. But then the i-th component is connected and has no cycles. So similar to Case 1 we get a contradiction.

