Lecturer: Shayan Oveis Gharan

Lecture Properties of Graphs

1 In-class Exercise

- 1. Let G be a graph with n vertices and at least n edges. Show that G has a cycle.
- 2. Solution: We prove by contradiction! Suppose G has no cycle. Then,

Case 1: G is connected. Then since G has no cycles, G is a tree with n vertices. So it must have n - 1 edges. But we said it has $\geq n$. That is a contradiction.

Case 2: G is disconnected. Suppose G has ℓ connected components with number of vertices n_1, n_2, \ldots, n_ℓ and number of edges m_1, m_2, \ldots, m_ℓ .

Claim: For some *i* we must have $m_i \ge n_i$. **Pf:** For contradiction assume $m_i < n_i$ for all *i*. Summing up these inequalities we get $m = \sum_i m_i < \sum_i n_i = n$. But that contradicts the assumption that $m \ge n$.

So assume $m_i \ge n_i$. But then the *i*-th component is connected and has no cycles. So similar to Case 1 we get a contradiction.