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Sparse Graphs

A graph is called sparse if 𝑚 ≪ 𝑛! and it is called dense 
otherwise.

Sparse graphs are very common in practice
• Friendships in social network
• Planar graphs
• Web braph

Q: Which is a better running time 𝑂(𝑛 +𝑚) vs 𝑂(𝑛!)?
A: 𝑂 𝑛 +𝑚 ≤ 𝑂(𝑛!), but 𝑂(𝑛 +𝑚) is usually much better.
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Storing Graphs (Internally in ALG)

Vertex set 𝑉 = 𝑣", … , 𝑣# .
Adjacency Matrix: A
• For all, 𝑖, 𝑗, 𝐴 𝑖, 𝑗 = 1 iff 𝑣$, 𝑣% ∈ 𝐸
• Storage: 𝑛! bits

Advantage:
• 𝑂(1) test for presence or absence of edges

Disadvantage:
• Inefficient for sparse graphs both in storage and edge-

access
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Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure
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Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices 
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive 

layers based on distance from s
• Depth First Search (DFS): More natural approach for 

exploring a maze; many efficient algs build on it.

Applications:
• Finding Connected components of a graph
• Testing Bipartiteness
• Finding Aritculation points
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Breadth First Search (BFS)

Completely explore the vertices in order of their distance 
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
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BFS implementation
Global initialization: mark all vertices "undiscovered" 

BFS(s) 
mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully-explored
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BFS Analysis
Global initialization: mark all vertices "undiscovered" 

BFS(s) 
mark s discovered
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully-explored
If we use adjacency list: 𝑂 𝑛 + 𝑂(∑& deg(𝑣)) = 𝑂(𝑚 + 𝑛)
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𝐝𝐞𝐠 𝒖 ≤ 𝑶(𝒏) times

O(n) times: Once from 
every vertex if G is connected



Properties of BFS

• BFS(s) visits a vertex v  if and only if there is a path from 
s to v

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of G

• Level 𝑖 in the tree are exactly all vertices v s.t., the 
shortest path (in G) from the root s to v is of length 𝑖

• All edges join vertices on the same or adjacent levels of 
the tree
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BFS Application: Shortest Paths
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Simple Observations

Obs 1: Every vertex in the queue is marked discovered

Obs 2: When we process u at top of queue of level 𝑖, any 
undiscovered neighbor of u will be at level 𝑖 + 1.

Obs 3: At any time, the vertices in the queue are either on 
a level 𝑖 or 𝑖 + 1 where vertices of level 𝑖 are ahead of 
vertices of level 𝑖 + 1. 
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Properties of BFS

Claim: All edges join vertices on the same or adjacent 
levels of the tree

Pf: Consider an edge {x,y}
Say x is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to x are considered 
in the loop, if y is still undiscovered, it will be discovered 
and added to level 𝑖 + 1.
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Properties of BFS
Lemma: All vertices at level 𝑖 of BFS(s) have shortest path 
distance 𝑖 to s.

Claim: If 𝐿 𝑣 = 𝑖 then shortest path ≤ 𝑖
Pf: Because there is a path of length 𝑖 from 𝑠 to 𝑣 in the BFS tree

Claim: If shortest path = 𝑖 then 𝐿 𝑣 ≤ 𝑖
Pf: If shortest path = 𝑖, then say 𝑠 = 𝑣!, 𝑣", … , 𝑣# = 𝑣 is the 
shortest path to v.
By previous claim, 

𝐿 𝑣" ≤ 𝐿 𝑣! + 1
𝐿 𝑣$ ≤ 𝐿 𝑣" + 1

…
𝐿 𝑣# ≤ 𝐿 𝑣#%" + 1

So, 𝐿 𝑣# ≤ 𝑖.

This proves the lemma. 
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Why Trees?

Trees are simpler than graphs
Many statements can be proved on trees by induction

So, computational problems on trees are simpler than 
general graphs

This is often a good way to approach a graph problem: 
• Find a "nice" tree in the graph, i.e., one such that non-

tree edges have some simplifying structure
• Solve the problem on the tree
• Use the solution on the tree to find a “good” solution on 

the graph
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Graph Search App: Connected Comp

We want to answer the following type questions (fast):
Given vertices u,v is there a path from u to v in G?

Idea: Create an array A such that
For all u, A[u] is the label of the connected component that 
contains u

Therefore, question reduces to
If A[u] = A[v]?
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Connected Components Implementation
Initial State: All vertices undiscovered, c ¬0
for v = 1 to n do

If state(v) != fully-explored then                                 
BFS(v): setting A[u] ¬c for each u found 
(and marking u discovered/fully-explored)
c¬c+1

Note: We no longer initialize to undiscovered in the BFS 
subroutine

Total Cost: O(m+n)
In every connected component with 𝑛$ vertices and 𝑚$

edges BFS takes time 𝑂 𝑚$ + 𝑛$ .
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Connected Components

Lesson: We can execute any algorithm on disconnected 
graphs by running it on each connected component.

We can use the previous algorithm to detect connected 
components. 
There is no overhead, because the algorithm runs in time 
O(m+n).

So, from now on, we can (almost) always assume the input 
graph is connected.
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