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Terminology

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path 
between every two vertices

• Connected component: Maximal set of connected 
vertices
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Terminology (cont’d)

• Path: A sequence of distinct vertices 
s.t. each vertex is connected 
to the next vertex with an edge

• Cycle: Path of length > 2 that has 
the same start and end

• Tree: A connected graph with no cycles
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Degree Sum

Claim: In any undirected graph, the number of edges is 
equal to ⁄1 2 ∑!"#$"% & deg(𝑣)

Pf: ∑!"#$"% & deg(𝑣) counts every edge of the graph exactly 
twice; once from each end of the edge.
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deg 𝑣 = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16



Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree 
vertices is even
Pf: In previous claim we showed sum of all vertex degrees 
is even. So there must be even number of odd degree 
vertices, because sum of odd number of odd numbers is 
odd.
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Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(So, every tree has a leaf)
Pf: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣! and follow a path, 𝑣!, … , 𝑣" when we are at 
𝑣" we choose the next vertex to be different from 𝑣"#!. We can 
do so because deg 𝑣" ≥ 2.
The first time that we see a repeated vertex (𝑣$ = 𝑣") we get a 
cycle. 
We always get a repeated vertex because 𝐺 has finitely many 
vertices
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Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.
Base Case: n=1, the tree has no edge
IH: Suppose every tree with n-1 vertices has n-2 edges
IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T’ be the new 
graph.
We claim T’ is a tree: It has no cycle, and it must be  
connected.
So, T’ has n-2 edges and T has n-1 edges.
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#edges

Let 𝐺 = (𝑉, 𝐸) be a graph with 𝑛 = |𝑉| vertices and 𝑚 = 𝐸
edges.

Claim: 0 ≤ 𝑚 ≤ '
( = ' ')*

(
= 𝑂(𝑛()

Pf: Since every edge connects two distinct vertices (i.e., G 
has no loops) 
and no two edges connect the same pair of vertices (i.e., G 
has no multi-edges)
It has at most '

( edges.
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Sparse Graphs

A graph is called sparse if 𝑚 ≪ 𝑛( and it is called dense 
otherwise.

Sparse graphs are very common in practice
• Friendships in social network
• Planar graphs
• Web braph

Q: Which is a better running time 𝑂(𝑛 +𝑚) vs 𝑂(𝑛()?
A: 𝑂(𝑛 +𝑚) = 𝑂(𝑛(), but 𝑂(𝑛 +𝑚) is usually much better.
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Storing Graphs (Internally in ALG)

Vertex set 𝑉 = 𝑣*, … , 𝑣' .
Adjacency Matrix: A
• For all, 𝑖, 𝑗, 𝐴 𝑖, 𝑗 = 1 iff 𝑣+, 𝑣, ∈ 𝐸
• Storage: 𝑛( bits

Advantage:
• 𝑂(1) test for presence or absence of edges

Disadvantage:
• Inefficient for sparse graphs both in storage and edge-

access
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Storing Graphs (Internally in ALG)

Adjacency List:
O(n+m) words

Advantage
• Compact for sparse
• Easily see all edges

Disadvantage
• No O(1) edge test
• More complex data structure
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Graph Traversal

Walk (via edges) from a fixed starting vertex 𝑠 to all vertices 
reachable from 𝑠.
• Breadth First Search (BFS): Order nodes in successive 

layers based on distance from s
• Depth First Search (DFS): More natural approach for 

exploring a maze; many efficient algs build on it.

Applications:
• Finding Connected components of a graph
• Testing Bipartiteness
• Finding Aritculation points
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Breadth First Search (BFS)

Completely explore the vertices in order of their distance 
from 𝑠.

Three states of vertices:
• Undiscovered
• Discovered
• Fully-explored

Naturally implemented using a queue
The queue will always have the list of Discovered vertices
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BFS implementation
Global initialization: mark all vertices "undiscovered" 

BFS(s) 
mark  s "discovered"
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully-explored
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BFS Analysis
Global initialization: mark all vertices "undiscovered" 

BFS(s) 
mark s discovered
queue = { s }
while queue not empty

u = remove_first(queue)
for each edge {u,x}

if (x is undiscovered) 
mark x discovered
append x on queue

mark u fully-explored
If we use adjacency list: 𝑂 𝑛 + 𝑂(∑& deg(𝑣)) = 𝑂(𝑚 + 𝑛)
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𝐝𝐞𝐠 𝒖 ≤ 𝑶(𝒏) times

O(n) times: Once from 
every vertex if G is connected



Properties of BFS

• BFS(s) visits a vertex v  if and only if there is a path from 
s to v

• Edges into then-undiscovered vertices define a tree –
the “Breadth First spanning tree” of G

• Level 𝑖 in the tree are exactly all vertices v s.t., the 
shortest path (in G) from the root s to v is of length 𝑖

• All nontree edges join vertices on the same or adjacent 
levels of the tree
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BFS Application: Shortest Paths

1

2 3

10

5

4

9

12
8

13

6
7

11

BFS Tree gives shortest 
paths from 1 to all vertices 

0

1

2

3

4All edges connect same
or adjacent levels



29

BFS Application: Shortest Paths

1

2 3

10

54

9

12

8

13

6 7

11

BFS Tree gives shortest 
paths from 1 to all vertices 

0

1

2

3

4All edges connect same
or adjacent levels



Properties of BFS

Claim: All nontree edges join vertices on the same or 
adjacent levels of the tree

Pf: Consider an edge {x,y}
Say x is first discovered and it is added to level 𝑖.
We show y will be at level 𝑖 or 𝑖 + 1

This is because when vertices incident to x are considered 
in the loop, if y is still undiscovered, it will be discovered 
and added to level 𝑖 + 1.
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