Lecturer: Shayan Oveis Gharan

Lecture Induction on Graphs

1 Triangles in Graphs (Optional)

Theorem 1. If a graph on 2n vertices has $n^2 + 1$ edges, then it has a triangle.

Proof We prove it by induction on n. P(n) = ``Any graph G = (V, E) with 2n vertices and $m \ge n^2 + 1$ edges has a triangle.

Base Case: P(1): When n = 1, P(1) holds since the number of edges is at most $1 < n^2 + 1$. IH: P(n) holds for some $n \ge 1$.

IS: We prove P(n+1). Let G be an arbitrary graph with 2(n+1) vertices and at least $m \ge (n+1)^2 + 1$ edges. Let $\{x,y\}$ be an arbitrary edge in the graph. Consider the graph G' = G - x - y on 2n vertices obtained by **deleting** x,y (and all of their incident edges) from the original graph. If G' has at least $n^2 + 1$ edges, then by IH it has a triangle, and we are done.

Otherwise, G' has at most n^2 edges. Since G has at least $(n+1)^2 + 1$ edges, by removing x, y we have deleted $(n+1)^2 + 1 - n^2 = 2n + 2$ edges from G. Since $\{x,y\}$ is also an edge, there are at least 2n + 1 edges that connect x, y to the vertices of G'. Thus by the pigeonhole principle, there is some vertex z so that $\{x,z\}, \{y,z\}$ are both edges of G. But, then x,y,z form a triangle in G.

The above theorem is tight. Consider the graph with n vertices on the left and n vertices on the right and every vertex on the left is connected to every vertex on the right. This graph has no triangles but n^2 edges.

Also, note the importance of deletion in the induction. Here, we crucially used that the x, y pair deleted from G were **neighbors** in G.