1 Triangles in Graphs (Optional)

Theorem 1. If a graph on $2 n$ vertices has $n^{2}+1$ edges, then it has a triangle.
Proof We prove it by induction on $n . P(n)=$ "Any graph $G=(V, E)$ with $2 n$ vertices and $m \geq n^{2}+1$ edges has a triangle.

Base Case: $P(1)$: When $n=1, P(1)$ holds since the number of edges is at most $1<n^{2}+1$.
IH: $P(n)$ holds for some $n \geq 1$.
IS: We prove $P(n+1)$. Let G be an arbitrary graph with $2(n+1)$ vertices and at least $m \geq(n+1)^{2}+1$ edges. Let $\{x, y\}$ be an arbitrary edge in the graph. Consider the graph $G^{\prime}=G-x-y$ on $2 n$ vertices obtained by deleting x, y (and all of their incident edges) from the original graph. If G^{\prime} has at least $n^{2}+1$ edges, then by IH it has a triangle, and we are done.

Otherwise, G^{\prime} has at most n^{2} edges. Since G has at least $(n+1)^{2}+1$ edges, by removing x, y we have deleted $(n+1)^{2}+1-n^{2}=2 n+2$ edges from G. Since $\{x, y\}$ is also an edge, there are at least $2 n+1$ edges that connect x, y to the vertices of G^{\prime}. Thus by the pigeonhole principle, there is some vertex z so that $\{x, z\},\{y, z\}$ are both edges of G. But, then x, y, z form a triangle in G.

The above theorem is tight. Consider the graph with n vertices on the left and n vertices on the right and every vertex on the left is connected to every vertex on the right. This graph has no triangles but n^{2} edges.

Also, note the importance of deletion in the induction. Here, we crucially used that the x, y pair deleted from G were neighbors in G.

