
CSE 421: Introduction
to Algorithms

Course Overview

Shayan Oveis Gharan

1

Administrativia Stuffs

HW1 is due Thursday April 07 at 11:59PM
Please submit to Gradescope

Late Submission: Fill out an extension request
in edstem.

How to submit?
• Double check your submission before the deadline!!
• Please typeset your solution if possible

Guidelines:
• Always justify your answer
• You can collaborate, but you must write solutions on your own
• Your proofs should be clear, well-organized, and concise. Spell out

main idea.
• Sanity Check: Spell out when you use assumptions of the problem

2

Induction: Intro 2

Prove that if n+1 balls are placed into n bins then one bin has at
least two balls.

Def: P(n): If n+1 balls are placed into n bins then one bin has at
least two balls.

Base Case: P(1) holds. Two balls into one bin

IH: P(n-1) holds for some 𝑛 ≥ 2

IS: Goal is to prove P(n). Suppose n+1 balls are placed into n
bins. Need to show a bin has ≥ 2 balls. Look at bin 1.
Case 1: Bin 1 has at least two balls. Then we are done.
Case 2: Bin 1 has 1 ball. Then. we have placed n balls into bins
2,..,n. So, by IH one bin has at least two balls.
Case 3: Bin 1 has 0 balls. Remove an arbitrary ball. Then, we
have n balls in bins 2,..,n. So, by IH a bin has ≥ 2 balls

3

Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case

11

Measuring Efficiency

Time » # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long

string,…) built in; write it/charge for it as above

13

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
steps

14

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on
any input of size N

Average Case Complexity: avg # steps algorithm takes on
inputs of size N

Best Case Complexity: min # steps algorithm takes on any
input of size N

15

This Couse

Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
e.g., space shuttle, nuclear reactors)

• Worst-case instances kick in when an algorithm is run as
a module many times
e.g., geometry or linear algebra library

• Useful when running competitions
e.g., airline prices

• Unlike average-case no debate about the right definition

16

17

Time Complexity on Worst Case Inputs

Problem size N

Ti
m

e

T(N)

𝑁 log!𝑁

2𝑁 log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
eventually always c1g(N) £ f(N) £ c2g(N)

18

Asymptotic Bounds for common fns

• Polynomials:
𝑎! + 𝑎"𝑛 +⋯+ 𝑎#𝑛# is 𝑂 𝑛#

• Logarithms:
log$ 𝑛 = 𝑂(log% 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛&)

• 𝑛 log 𝑛 = 𝑂 𝑛".!"

19

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk)
• Polynomial-time is exactly the set of running times that

have this property

Typical running times are small degree polynomials,
mostly less than N3, at worst N6, not N100

20

Why it matters?

21

• #atoms in universe < 2!"#
• Life of the universe < 2$" seconds
• A CPU does < 2%# operations a second
If every atom is a CPU, a 2& time ALG cannot solve n=350 if we start at
Big-Bang.

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical
analysis.

• “My problem is in P” is a starting point for a more
detailed analysis

• “My problem is not in P” may suggest that you need to
shift to a more tractable variant

22

23

Graphs

Graphs

24

Undirected Graphs G=(V,E)

25

A

2
10

9

8

3

4

B
6

7

11
12

13

Disconnected graph

Isolated vertices

Multi edges

Self loop

Graphs don’t Live in Flat Land

Geometrical drawing is mentally convenient, but
mathematically irrelevant:

4 drawings of a single graph:

26

A

7 4

3
A

74

3

A

74

3

A

7 4

3

Directed Graphs

27

1

2
10

9

8

3

4

5
6

7

11
12

13
Multi edge

self loop

Terminology

• Degree of a vertex: # edges that touch that vertex

deg(6)=3

• Connected: Graph is connected if there is a path
between every two vertices

• Connected component: Maximal set of connected
vertices

28

3

4
5

6

7
2

10

1

Terminology (cont’d)

• Path: A sequence of distinct vertices
s.t. each vertex is connected
to the next vertex with an edge

• Cycle: Path of length > 2 that has
the same start and end

• Tree: A connected graph with no cycles

29

3

4

5
6

2
10

1

2 5

1

34 6

Degree Sum

Claim: In any undirected graph, the number of edges is
equal to ⁄1 2 ∑()*+), - deg(𝑣)

Pf: ∑()*+), - deg(𝑣) counts every edge of the graph exactly
twice; once from each end of the edge.

30

3

4
5

6

7
2

10

1

|E|=8

#
'()*(+ ,

deg 𝑣 = 2 + 2 + 1 + 1 + 3 + 2 + 3 + 2 = 16

Odd Degree Vertices

Claim: In any undirected graph, the number of odd degree
vertices is even
Pf: In previous claim we showed sum of all vertex degrees
is even. So there must be even number of odd degree
vertices, because sum of odd number of odd numbers is
odd.

31

3

4
5

6

7
2

10

1

4 odd degree vertices
3, 4, 5, 6

Degree 1 vertices

Claim: If G has no cycle, then it has a vertex of degree ≤ 1
(So, every tree has a leaf)
Pf: (By contradiction)
Suppose every vertex has degree ≥ 2.
Start from a vertex 𝑣! and follow a path, 𝑣!, … , 𝑣" when we are at
𝑣" we choose the next vertex to be different from 𝑣"#!. We can
do so because deg 𝑣" ≥ 2.
The first time that we see a repeated vertex (𝑣$ = 𝑣") we get a
cycle.
We always get a repeated vertex because 𝐺 has finitely many
vertices

32

𝑣- 𝑣$𝑣"𝑣! 𝑣%

Trees and Induction

Claim: Show that every tree with n vertices has n-1 edges.

Pf: By induction.
Base Case: n=1, the tree has no edge
IH: Suppose every tree with n-1 vertices has n-2 edges
IS: Let T be a tree with n vertices.
So, T has a vertex v of degree 1.
Remove v and the neighboring edge, and let T’ be the new
graph.
We claim T’ is a tree: It has no cycle, and it must be
connected.
So, T’ has n-2 edges and T has n-1 edges.

33

