1 Asymptotics

Some properties of asymptotics:

- If $f \leq O(g)$ and $g \leq O(h)$ then $f \leq O(h)$.
- If $f \geq \Omega(g)$ and $g \geq \Omega(h)$ then $f \geq \Omega(h)$.
- If $f=\Theta(g)$ and $g=\Theta(h)$ then $f=\Theta(h)$.
- If $f=O(h), g=O(h)$ then $f+g=O(h)$.

Some common running times:

- Polynomial: $O\left(n^{d}\right)$. Exponential $2^{O(n)}$, Logarithmic $O(\log n)$.
- For every positive ϵ (no matter how small), $\log n \leq O\left(n^{\epsilon}\right)$. For every positive d (no matter how large), $n^{d} \leq O\left(2^{n}\right)$.

2 In class exercise

Arrange in increasing order of asymptotic growth. All logs are in base 2.
a) $n^{5 / 3} \log ^{2} n$
b) $2^{\sqrt{\log n}}$
c) $\sqrt{n^{n}}$
d) $\frac{n^{2}}{\log n}$
e) 2^{n}.

Hint: Recall rules of logarithm

- $\log (a \cdot b)=\log a+\log b$,
- $\log (a / b)=\log a-\log b$.
- $\log a^{b}=b \log a$.

Always keep in mind $n=2^{\log _{2} n}$. For example, $n^{1.5}=2^{1.5 \log _{2} n}$. Also recall and that $\left(2^{a}\right)^{b}=2^{a \cdot b}$. Furthermore, $2^{\left(a^{b}\right)} \neq\left(2^{a}\right)^{b}$.

3 Solution

In this part I will discuss the solution to the exercise. In many cases it might be difficult to directly compare two function $f(n), g(n)$ asymptotically. An idea that usually helps out is to compare $\log f(n)$ with $\log g(n)$. Recall that logarithm is an increasing function, so if $f(n)>g(n)$ for some $n>N$ then $\log f(n)>\log g(n)$ for $n>N$. Here are two important rules when comparing the logs.

When comparing logarithms ignore additive constants: We said in class that $n, 3 n$ are asymptotically the same. If you take the \log, then you are comparing $\log n$ with $\log n+\log 3$. So, you can ignore the additive $\log 3$.

When comparing logarithms, multiplicative constants matter: Consider the two functions n, n^{2}. Obviously n^{2} grows asymptotically faster. When comparing the \log, we have $\log n, 2 \log n$. So, the 2 multiplicative constant matters and shows that n^{2} grows faster.

Having said these, I will write down the solution to exercise. First, we calculate the logs:
a) $\log n^{5 / 3} \log ^{2} n=\frac{5}{3} \log n+2 \log \log n$.
b) $\log 2^{\sqrt{\log n}}=\sqrt{\log n} \log 2=\sqrt{\log n}$.
c) $\log \sqrt{n^{n}}=\frac{1}{2} \log n^{n}=\frac{n}{2} \log n$.
d) $\log \frac{n^{2}}{\log n}=\log n^{2}-\log \log n=2 \log n-\log \log n$.
e) $\log 2^{n}=n \log 2=n$.

Therefore, $\sqrt{\log n}<\frac{5}{3} \log n<2 \log n-\log \log n<n<\frac{n}{2} \log n$. Note that when comparing $\frac{5}{3} \log n+2 \log \log n$ and $2 \log n-\log \log n, \log \log n$ is a lower order term. So, first we compare the dominating terms $5 / 3 \log n$ and $2 \log n$. In this case the latter is bigger. If the dominating term were the same then we would have compared to lower order terms.

