
CSE 421:  Introduction 
to Algorithms

Stable Matching

Shayan Oveis Gharan

1



Summary

Stable matching problem: Given n companies and n
applicants, and their preferences, find a stable matching if 
one exists.

• Gale-Shapley algorithm: Guarantees to find a stable 
matching for any problem instance.

• Q: If there are multiple stable matchings, which one does 
GS find?

• Q: How to implement GS algorithm efficiently?

• Q: How many stable matchings are there?
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Company Optimal Assignments

Definition: Company 𝑐 is a valid partner of applicant 𝑎 if 
there exists some stable matching in which they are 
matched.

Company-optimal matching: Each company receives the 
best valid partner (according to its preferences).
• Not that each company receives its most favorite applicant.

Claim: All executions of GS yield a company-optimal
matching, which is a stable matching!
• So, output of GS is unique!!
• No reason a priori to believe that company-optimal matching is 

perfect, let alone stable.
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Company Optimality Summary

Company-optimality: In version of GS where companies 
propose, each comapny receives the best valid partner.

Q: Does company-optimality come at the expense of the 
applicants?
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𝑎 is a valid partner of 𝑐 if there exist some
stable matching where 𝑐 and 𝑎 are paired



Applicant Pessimality

Applicant-pessimal assignment: Each applicant receives 
the worst valid partner.

Claim. GS finds applicant-pessimal stable matching S*.

Proof.
Suppose 𝑐, 𝑎 matched in S*, but 𝑐 is not the worst valid partner for 𝑎.   
There exists stable matching S in which 𝑎 is paired with a company, 
say 𝑐′, whom she likes less than 𝑐.

Let 𝑎′ be 𝑐 partner in S.
𝑐 prefers 𝑎 to 𝑎′.
Thus, (𝑐, 𝑎) is an unstable in S. 
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Efficient Implementation

We describe 𝑂(𝑛!) time implementation. This is linear in input size.

Representing company and applicant:
Assume companies are named 1, …, n.
Assume applicants are named n+1, …, 2n.

Data Structure: 
Maintain a list of free company, e.g., in a queue.
Maintain two arrays applicant[c], and company[a].

• set entry to 0 if unmatched
• if c matched to a then applicant[c]=a and company[a]=c

Companies proposing:
For each company, maintain a list of applicants, ordered by preference.
Maintain an array count[c] that counts the number of proposals made by 

company c.
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Efficient Implementation

Applicants rejecting/accepting.
Does applicant a prefer c to c'?
For each applicant, create inverse of preference list of companies.
Constant time access for each query after O(n) preprocessing per 

applicant.  O(n2) total reprocessing cost.
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for i = 1 to n 
for j = 1 to n

inverse[i][pref[i][j]] = j

Pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th𝑎"

Inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8𝑎"

𝑎! prefers company 3 to 6
since inverse[i][3]=2 < 7=inverse[i][6]



Summary

• Stable matching problem: Given n men and n women, 
and their preferences, find a stable matching if one 
exists.

• Gale-Shapley algorithm guarantees to find a stable 
matching for any problem instance.

• GS algorithm finds a stable matching in O(n2) time.

• GS algorithm finds man-optimal woman pessimal
matching

• Q: How many stable matching are there?

9



Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.
• Create useful and efficient algorithms.

• Potentially deep social ramifications.  [legal disclaimer]
• Always try to propose first!
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How many stable Matchings?

We already show every instance has at least 1 stable 
matchings.

[Knuth’76] There are instances with about 2.24! stable 
matchings for

[Karlin-O-Weber’17]: Every instance has at most 131072!
stable matchings
[Palmer-Palvolgyi’20]: Every instance has at most 4.47! stable 
matchings

[Research-Question]: 
Is there an “efficient” algorithm that chooses a uniformly 
random stable matching of a given instance.
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Induction: Intro 1

Prove that  for all 𝑛 ≥ 1,
1 + 2 +⋯+ 𝑛 =

𝑛 𝑛 + 1
2

.

Def 𝑃 𝑛 = 1 + 2 +⋯+ 𝑛 = ! !"#
$

Base Case: 𝑃(1) holds: 1 = 1(1 + 1)/2
IH: 𝑃(𝑛 − 1) holds.
IS: Goal to prove 𝑃(𝑛).

1 +⋯+ 𝑛 = 1 +⋯+ 𝑛 − 1 + 𝑛
=

𝑛 − 1 𝑛
2

+ 𝑛

=
𝑛 𝑛 + 1

2
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Induction: Intro 2

Prove that if n+1 balls are placed into n bins then one bin has at 
least two balls.

Def: P(n): If n+1 balls are placed into n bins then one bin has at 
least two balls.

Base Case: P(1) holds. Two balls into one bin

IH: P(n-1) holds)

IS: Goal is to prove P(n). Suppose n+1 balls are placed into n 
bins. Need to show a bin has >=2 balls. Look at bin 1.
Case 1: Bin 1 has at least two balls. Then we are done.
Case 2: Bin 1 has 1 ball. Then. we have placed n balls into bins 
2,..,n. So, by IH one bin has at least two balls.
Case 3: Bin 1 has 0 balls. Remove an arbitrary ball. Then, we 
have n balls into bins 2,..,n. So, by IH a bin has >=2 balls
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Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case
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Measuring Efficiency

Time » # of instructions executed in a simple programming 
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long 

string,…) built in; write it/charge for it as above
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Time Complexity

Problem: An algorithm can have different running time on 
different inputs

Solution: The complexity of an algorithm associates a 
number T(N), the “time” the algorithm takes on problem 
size N.

Mathematically,
T is a function that maps positive integers giving 

problem size to positive integers giving number of 
steps
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On which inputs of size N?



Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on 
any input of size N

Average Case Complexity: avg # steps algorithm takes on 
inputs of size N

Best Case Complexity: min # steps algorithm takes on any 
input of size N
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Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications 
e.g., space shuttle, nuclear reactors, uber, …)

• Worst-case instances kick in when an algorithm is run as 
a module many times 
e.g., geometry or linear algebra library

• Useful when running competitions 
e.g., airline prices, online retail, …

• Unlike average-case no debate about the right definition
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Time Complexity on Worst Case Inputs

Problem size  N

Ti
m

e

T(N)

𝑁 log)𝑁

2𝑁 log2𝑁



O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,        
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t., 
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that 
eventually always c1g(N) £ f(N) £ c2g(N)
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Asymptotic Bounds for common fns

• Polynomials:
𝑎% + 𝑎#𝑛 +⋯+ 𝑎&𝑛& is 𝑂 𝑛&

• Logarithms: 
log' 𝑛 = 𝑂(log( 𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛))

• 𝑛 log 𝑛 = 𝑂 𝑛#.%#
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Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some 
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then 

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk) 
• Polynomial-time is exactly the set of running times that 

have this property

Typical running times are small degree polynomials, 
mostly less than N3, at worst N6, not N100
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Why it matters?
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• #atoms in universe < 2!"#
• Life of the universe < 2$" seconds
• A CPU does < 2%# operations a second
If every atom is a CPU, a 2& time ALG cannot solve n=350 if we start at 
Big-Bang.

not only get very big, but do so abruptly, which likely yields 
erratic performance on small instances



Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the 
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture 
such differences, whereas exponentials are qualitatively 
different from polynomials, so more amenable to theoretical 
analysis.

• “My problem is in P” is a starting point for a more 
detailed analysis

• “My problem is not in P” may suggest that you need to 
shift to a more tractable variant
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