
CSE 421: Introduction
to Algorithms

Stable Matching

Shayan Oveis Gharan

1

Summary

Stable matching problem: Given n companies and n
applicants, and their preferences, find a stable matching if
one exists.

• Gale-Shapley algorithm: Guarantees to find a stable
matching for any problem instance.

• Q: If there are multiple stable matchings, which one does
GS find?

• Q: How to implement GS algorithm efficiently?

• Q: How many stable matchings are there?

2

Company Optimal Assignments

Definition: Company 𝑐 is a valid partner of applicant 𝑎 if
there exists some stable matching in which they are
matched.

Company-optimal matching: Each company receives the
best valid partner (according to its preferences).
• Not that each company receives its most favorite applicant.

Claim: All executions of GS yield a company-optimal
matching, which is a stable matching!
• So, output of GS is unique!!
• No reason a priori to believe that company-optimal matching is

perfect, let alone stable.

3

Company Optimality Summary

Company-optimality: In version of GS where companies
propose, each comapny receives the best valid partner.

Q: Does company-optimality come at the expense of the
applicants?

5

𝑎 is a valid partner of 𝑐 if there exist some
stable matching where 𝑐 and 𝑎 are paired

Applicant Pessimality

Applicant-pessimal assignment: Each applicant receives
the worst valid partner.

Claim. GS finds applicant-pessimal stable matching S*.

Proof.
Suppose 𝑐, 𝑎 matched in S*, but 𝑐 is not the worst valid partner for 𝑎.
There exists stable matching S in which 𝑎 is paired with a company,
say 𝑐′, whom she likes less than 𝑐.

Let 𝑎′ be 𝑐 partner in S.
𝑐 prefers 𝑎 to 𝑎′.
Thus, (𝑐, 𝑎) is an unstable in S.

6

company-optimality of S*

Efficient Implementation

We describe 𝑂(𝑛!) time implementation. This is linear in input size.

Representing company and applicant:
Assume companies are named 1, …, n.
Assume applicants are named n+1, …, 2n.

Data Structure:
Maintain a list of free company, e.g., in a queue.
Maintain two arrays applicant[c], and company[a].

• set entry to 0 if unmatched
• if c matched to a then applicant[c]=a and company[a]=c

Companies proposing:
For each company, maintain a list of applicants, ordered by preference.
Maintain an array count[c] that counts the number of proposals made by

company c.

7

Efficient Implementation

Applicants rejecting/accepting.
Does applicant a prefer c to c'?
For each applicant, create inverse of preference list of companies.
Constant time access for each query after O(n) preprocessing per

applicant. O(n2) total reprocessing cost.

8

for i = 1 to n
for j = 1 to n

inverse[i][pref[i][j]] = j

Pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th𝑎"

Inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8𝑎"

𝑎! prefers company 3 to 6
since inverse[i][3]=2 < 7=inverse[i][6]

Summary

• Stable matching problem: Given n men and n women,
and their preferences, find a stable matching if one
exists.

• Gale-Shapley algorithm guarantees to find a stable
matching for any problem instance.

• GS algorithm finds a stable matching in O(n2) time.

• GS algorithm finds man-optimal woman pessimal
matching

• Q: How many stable matching are there?

9

Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.
• Create useful and efficient algorithms.

• Potentially deep social ramifications. [legal disclaimer]
• Always try to propose first!

10

How many stable Matchings?

We already show every instance has at least 1 stable
matchings.

[Knuth’76] There are instances with about 2.24! stable
matchings for

[Karlin-O-Weber’17]: Every instance has at most 131072!
stable matchings
[Palmer-Palvolgyi’20]: Every instance has at most 4.47! stable
matchings

[Research-Question]:
Is there an “efficient” algorithm that chooses a uniformly
random stable matching of a given instance.

11

Induction: Intro 1

Prove that for all 𝑛 ≥ 1,
1 + 2 +⋯+ 𝑛 =

𝑛 𝑛 + 1
2

.

Def 𝑃 𝑛 = 1 + 2 +⋯+ 𝑛 = ! !"#
$

Base Case: 𝑃(1) holds: 1 = 1(1 + 1)/2
IH: 𝑃(𝑛 − 1) holds.
IS: Goal to prove 𝑃(𝑛).

1 +⋯+ 𝑛 = 1 +⋯+ 𝑛 − 1 + 𝑛
=

𝑛 − 1 𝑛
2

+ 𝑛

=
𝑛 𝑛 + 1

2

13

By IH

Induction: Intro 2

Prove that if n+1 balls are placed into n bins then one bin has at
least two balls.

Def: P(n): If n+1 balls are placed into n bins then one bin has at
least two balls.

Base Case: P(1) holds. Two balls into one bin

IH: P(n-1) holds)

IS: Goal is to prove P(n). Suppose n+1 balls are placed into n
bins. Need to show a bin has >=2 balls. Look at bin 1.
Case 1: Bin 1 has at least two balls. Then we are done.
Case 2: Bin 1 has 1 ball. Then. we have placed n balls into bins
2,..,n. So, by IH one bin has at least two balls.
Case 3: Bin 1 has 0 balls. Remove an arbitrary ball. Then, we
have n balls into bins 2,..,n. So, by IH a bin has >=2 balls

14

Main Objective: Design Efficient Algorithms
that finds optimum solutions in the Worst Case

15

Measuring Efficiency

Time » # of instructions executed in a simple programming
language

only simple operations (+,*,-,=,if,call,…)
each operation takes one time step
each memory access takes one time step
no fancy stuff (add these two matrices, copy this long

string,…) built in; write it/charge for it as above

17

Time Complexity

Problem: An algorithm can have different running time on
different inputs

Solution: The complexity of an algorithm associates a
number T(N), the “time” the algorithm takes on problem
size N.

Mathematically,
T is a function that maps positive integers giving

problem size to positive integers giving number of
steps

18

On which inputs of size N?

Time Complexity (N)

Worst Case Complexity: max # steps algorithm takes on
any input of size N

Average Case Complexity: avg # steps algorithm takes on
inputs of size N

Best Case Complexity: min # steps algorithm takes on any
input of size N

19

This Couse

Why Worst-case Inputs?

• Analysis is typically easier

• Useful in real-time applications
e.g., space shuttle, nuclear reactors, uber, …)

• Worst-case instances kick in when an algorithm is run as
a module many times
e.g., geometry or linear algebra library

• Useful when running competitions
e.g., airline prices, online retail, …

• Unlike average-case no debate about the right definition

20

21

Time Complexity on Worst Case Inputs

Problem size N

Ti
m

e

T(N)

𝑁 log)𝑁

2𝑁 log2𝑁

O-Notation

Given two positive functions f and g

• f(N) is O(g(N)) iff there is a constant c>0 s.t.,
f(N) is eventually always £ c g(N)

• f(N) is W(g(N)) iff there is a constant e>0 s.t.,
f(N) is ³ e g(N) for infinitely

• f(N) is Q(g(N)) iff there are constants c1, c2>0 so that
eventually always c1g(N) £ f(N) £ c2g(N)

22

Asymptotic Bounds for common fns

• Polynomials:
𝑎% + 𝑎#𝑛 +⋯+ 𝑎&𝑛& is 𝑂 𝑛&

• Logarithms:
log' 𝑛 = 𝑂(log(𝑛) for all constants 𝑎, 𝑏 > 0

• Logarithms: log grows slower than every polynomial
For all 𝑥 > 0, log 𝑛 = 𝑂(𝑛))

• 𝑛 log 𝑛 = 𝑂 𝑛#.%#

23

Efficient = Polynomial Time

An algorithm runs in polynomial time if T(n)=O(nd) for some
constant d independent of the input size n.

Why Polynomial time?
If problem size grows by at most a constant factor then

so does the running time
• E.g. T(2N) £ c(2N)k £ 2k(cNk)
• Polynomial-time is exactly the set of running times that

have this property

Typical running times are small degree polynomials,
mostly less than N3, at worst N6, not N100

24

Why it matters?

25

• #atoms in universe < 2!"#
• Life of the universe < 2$" seconds
• A CPU does < 2%# operations a second
If every atom is a CPU, a 2& time ALG cannot solve n=350 if we start at
Big-Bang.

not only get very big, but do so abruptly, which likely yields
erratic performance on small instances

Why “Polynomial”?

Point is not that n2000 is a practical bound, or that the
differences among n and 2n and n2 are negligible.
Rather, simple theoretical tools may not easily capture
such differences, whereas exponentials are qualitatively
different from polynomials, so more amenable to theoretical
analysis.

• “My problem is in P” is a starting point for a more
detailed analysis

• “My problem is not in P” may suggest that you need to
shift to a more tractable variant

26

