CSE 421

Polynomial Time Reductions

NP Completeness

Shayan Oveis Gharan
Decision Problems

A decision problem is a computational problem where the answer is just yes/no.

Here, we study computational complexity of decision Problems.

Why?
• much simpler to deal with
• Decision version is not harder than Search version, so it is easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to find an answer.
Define P (polynomial-time) to be the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Do we well understand P?

- We can prove that a problem is in P by exhibiting a polynomial time algorithm
- It is in most cases very hard to prove a problem is not in P.
Beyond P?

We have seen many problems that seem hard

- Independent Set
- 3-coloring
- Min Vertex Cover
- 3-SAT

Given a 3-CNF \((x_1 \lor \overline{x_2} \lor x_9) \land (\overline{x_2} \lor x_3 \lor x_7) \land \cdots\) is there a satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof (a.k.a., certificate), that allows you to verify (in polynomial-time) that the answer is yes.

- The proof may be hard to find
Certifier: algorithm $C(x, t)$ is a certifier for problem A if for every string x, the answer is “yes” iff there exists a string t such that $C(x, t) = \text{yes}$.

Intuition: Certifier doesn't determine whether answer is “yes” on its own; rather, it checks a proposed proof that answer is “yes”.

NP: Decision problems for which there exists a poly-time certifier.

Remark. NP stands for nondeterministic polynomial-time.
Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the n boolean variables.

Verifier: Check that each clause has at least one true literal.
Ex: \((x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)\)

Certificate: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F\)

Conclusion: 3-SAT is in NP
Example: Hamil-Cycle is in NP

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.
Example: Min s,t-cut in in NP

MIN-CUT. Given a flow network, and a number k, does there exist a min-cut of capacity at most k?

Certificate. A s-t min-cut (A,B).

Certifier. Check that the capacity of the min-cut is at most k.

Conclusion. MIN-CUT is in NP.
P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.
 By definition, there exists a poly-time algorithm A(x) that solves X.
 Certificate: t = empty string, certifier C(x, ∅) = A(x).

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.
 By definition, there exists a poly-time certifier C(x, t) for X.
 To solve input x, run C(x, t) on all strings t with of length polyn in |x|
 Return yes, if C(x, t) returns yes for any of these.
The main question: P vs NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?

Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...

If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

If $P \neq NP$

If $P = NP$
What do we know about NP?

- Nobody knows if all problems in NP can be done in polynomial time, i.e. does $P=NP$?
 - one of the most important open questions in all of science.
 - Huge practical implications specially if answer is yes

- To show Hamil-cycle $\notin P$ we have to prove that there is no poly-time algorithm for it even using all mathematical theorem that will be discovered in future!
NP Completeness

Complexity Theorists Approach: We don’t know how to prove any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem \(A \in NP \), we have \(A \leq_p B \)

NP-Completeness: A problem B is NP-complete iff B is NP-hard and \(B \in NP \).

Motivations:
• If \(P \neq NP \), then every NP-Complete problems is not in P. So, we shouldn’t try to design Polytime algorithms
• To show \(P = NP \), it is enough to design a polynomial time algorithm for just one NP-complete problem.
Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all problems $A \in NP$, $A \leq_p 3$-SAT.

- So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like Independent set, Vertex Cover, …

Fact: If $A \leq_p B$ and $B \leq_p C$ then, $A \leq_p C$

Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT \leq_p Independent set, then Independent Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT \leq_p Independent Set \leq_p Vertex Cover \leq_p Set Cover
Summary

• If a problem is NP-hard it does not mean that all instances are hard, e.g., Vertex-cover has a polynomial-time algorithm on trees or bipartite graphs

• We learned the crucial idea of polynomial-time reduction. This can be even used in algorithm design, e.g., we know how to solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations
3-SAT \leq_P Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses

- Create a vertex for each literal
- Join two literals if
 - They belong to the same clause (blue edges)
 - The literals are negations, e.g., x_i, \overline{x}_i (red edges)
- Set k=m

$$ (x_1 \lor \overline{x}_3 \lor x_4) \land (x_2 \lor \overline{x}_4 \lor x_3) \land (x_2 \lor \overline{x}_1 \lor x_3) $$
Correctness of 3-SAT \leq_p Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause where the literal is satisfied

$$(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)$$

Satisfying assignment: $x_1 = T, x_2 = F, x_3 = T, x_4 = F$

- S has exactly one node per clause => No blue edges between S
- S follows a truth-assignment => No red edges between S
- S has one node per clause => $|S| = m$
Correctness of 3-SAT \leq_p Indep Set

An independent set of size m \Rightarrow A satisfying assignment
Given an independent set S of size m.
S has exactly one vertex per clause (because of blue edges)
S does not have $x_i, \overline{x_i}$ (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: $x_1 = F, x_2 = ?, x_3 = T, x_4 = T$
$(x_1 \lor \overline{x_3} \lor x_4) \land (x_2 \lor \overline{x_4} \lor x_3) \land (x_2 \lor \overline{x_1} \lor x_3)$
What is next?

- **CSE 431 (Complexity Course)**
 - How to prove lower bounds on algorithms?

- **CSE 422 (Advanced Toolkit for Modern Alg)**
 - SVD, Data structures, many programming tasks

- **CSE 521 (Graduate Algorithms Course)**
 - Prereq: 312, Math 308
 - How to design streaming algorithms?
 - How to design algorithms for high dimensional data?
 - How to use matrices/eigenvalues/eigenvectors to design algorithms
 - How to use LPs to design algorithms?

- **CSE 525 (Graduate Randomized Algorithms Course)**
 - Prereq: CSE 521
 - How to use randomization to design algorithms?
 - How to use Markov Chains to design algorithms?
Course Evaluations

• How can we improve this course?

• Did you like topics related to linear programming? Did you like to see more of that?

• Which topic was most/least interesting to you?

• Which problem sets did you like more?