
CSE 421

Polynomial Time Reductions
NP Completeness

Shayan Oveis Gharan

1

Decision Problems

A decision problem is a computational problem where the
answer is just yes/no

Here, we study computational complexity of decision Problems.

Why?
• much simpler to deal with
• Decision version is not harder than Search version, so it is

easier to lower bound Decision version
• Less important, usually, you can use decider multiple times to

find an answer .

2

Polynomial Time

Define P (polynomial-time) to be the set of all decision
problems solvable by algorithms whose worst-case running
time is bounded by some polynomial in the input size.

Do we well understand P?
• We can prove that a problem is in P by exhibiting a

polynomial time algorithm
• It is in most cases very hard to prove a problem is not in

P.

3

Beyond P?

We have seen many problems that seem hard
• Independent Set
• 3-coloring
• Min Vertex Cover
• 3-SAT

Given a 3-CNF 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥" ∨ 𝑥$ ∨ 𝑥% ∧ ⋯ is there a
satisfying assignment?

Common Property: If the answer is yes, there is a “short” proof
(a.k.a., certificate), that allows you to verify (in polynomial-time)
that the answer is yes.
• The proof may be hard to find

4

The independent set S
The 3-coloring

The vertex cover S
The T/F assignment

NP

Certifier: algorithm C(x, t) is a certifier for problem A if for every
string x, the answer is “yes” iff there exists a string t such
that C(x, t) = yes.

Intuition: Certifier doesn't determine whether answer is “yes” on
its own; rather, it checks a proposed proof that answer is “yes”.

NP: Decision problems for which there exists a poly-time
certifier.

Remark. NP stands for nondeterministic polynomial-time.

5

Example: 3SAT is in NP

Given a 3-CNF formula, is there a satisfying assignment?

Certificate: An assignment of truth values to the n boolean
variables.

Verifier: Check that each clause has at least one true
literal.
Ex: 𝑥! ∨ 𝑥" ∨ 𝑥# ∧ 𝑥$ ∨ 𝑥# ∨ 𝑥" ∧ (𝑥$ ∨ 𝑥! ∨ 𝑥")
Certificate: 𝑥! = 𝑇, 𝑥$ = 𝐹, 𝑥" = 𝑇, 𝑥# = 𝐹

Conclusion: 3-SAT is in NP

6

Example: Hamil-Cycle is in NP
HAM-CYCLE. Given an undirected graph G = (V, E), does there
exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V
exactly once, and that there is an edge between each pair of
adjacent nodes in the permutation.

Conclusion. HAM-CYCLE is in NP.

7
Instance x

certificate t

Example: Min s,t-cut in in NP
MIN-CUT. Given a flow network, and a number k, does there
exist a min-cut of capacity at most k?

Certificate. A s-t min-cut (A,B).

Certifier.Check that the capacity of the min-cut is at most k.

Conclusion. MIN-CUT is in NP.

8

P, NP, EXP
P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P ⊆ NP.
Pf. Consider any problem X in P.

By definition, there exists a poly-time algorithm A(x) that solves X.
Certificate: t = empty string, certifier C(x, ∅) = A(x). ▪

Claim. NP ⊆ EXP.
Pf. Consider any problem X in NP.

By definition, there exists a poly-time certifier C(x, t) for X.
To solve input x, run C(x, t) on all strings t with of length polyn in |x|
Return yes, if C(x, t) returns yes for any of these.

9

The main question: P vs NP
Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

Is the decision problem as easy as the certification problem?
Clay $1 million prize.

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

10

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

What do we know about NP?

• Nobody knows if all problems in NP can be done in
polynomial time, i.e. does P=NP?
• one of the most important open questions in all of science.
• Huge practical implications specially if answer is yes

• To show Hamil-cycle ∉ 𝑃 we have to prove that there is
no poly-time algorithm for it even using all mathematical
theorem that will be discovered in future!

11

NP Completeness

Complexity Theorists Approach: We don’t know how to prove
any problem in NP is hard. So, let’s find hardest problems in NP.

NP-hard: A problem B is NP-hard iff for any problem 𝐴 ∈ 𝑁𝑃, we
have 𝐴 ≤& 𝐵

NP-Completeness: A problem B is NP-complete iff B is NP-hard
and 𝐵 ∈ 𝑁𝑃.

Motivations:
• If 𝑃 ≠ 𝑁𝑃, then every NP-Complete problems is not in P. So,

we shouldn’t try to design Polytime algorithms
• To show 𝑃 = 𝑁𝑃, it is enough to design a polynomial time

algorithm for just one NP-complete problem.

12

Cook-Levin Theorem

Theorem (Cook 71, Levin 73): 3-SAT is NP-complete, i.e., for all
problems 𝐴 ∈ 𝑁𝑃, 𝐴 ≤& 3-SAT.

• So, 3-SAT is the hardest problem in NP.

What does this say about other problems of interest? Like
Independent set, Vertex Cover, …

Fact: If 𝐴 ≤& 𝐵 and 𝐵 ≤& 𝐶 then, 𝐴 ≤& 𝐶
Pf idea: Just compose the reductions from A to B and B to C

So, if we prove 3-SAT ≤& Independent set, then Independent
Set, Clique, Vertex cover, Set cover are all NP-complete

3-SAT ≤& Independent Set ≤& Vertex Cover ≤& Set Cover

13

Summary

• If a problem is NP-hard it does not mean that all instances are
hard, e.g., Vertex-cover has a polynomial-time algorithm on
trees or bipartite graphs

• We learned the crucial idea of polynomial-time reduction. This
can be even used in algorithm design, e.g., we know how to
solve max-flow so we reduce image segmentation to max-flow

• NP-Complete problems are the hardest problem in NP

• NP-hard problems may not necessarily belong to NP.

• Polynomial-time reductions are transitive relations

14

3-SAT ≤! Independent Set

Map a 3-CNF to (G,k). Say m is number of clauses
• Create a vertex for each literal
• Join two literals if

• They belong to the same clause (blue edges)
• The literals are negations, e.g., 𝑥' , /𝑥' (red edges)

• Set k=m

𝑥! ∨ 𝑥" ∨ 𝑥4 ∧ 𝑥# ∨ 𝑥$ ∨ 𝑥3 ∧ 𝑥# ∨ 𝑥! ∨ 𝑥3

15

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

Polynomial-Time Reduction

Correctness of 3-SAT ≤! Indep Set

F satisfiable => An independent of size m
Given a satisfying assignment, Choose one node from each clause
where the literal is satisfied

𝑥! ∨ 𝑥$ ∨ 𝑥) ∧ 𝑥" ∨ 𝑥) ∨ 𝑥$ ∧ 𝑥" ∨ 𝑥! ∨ 𝑥$
Satisfying assignment: 𝑥! = 𝑇, 𝑥# = 𝐹, 𝑥" = 𝑇, 𝑥$ = 𝐹

• S has exactly one node per clause => No blue edges between S
• S follows a truth-assignment => No red edges between S
• S has one node per clause => |S|=m 16

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

Correctness of 3-SAT ≤! Indep Set

An independent set of size m => A satisfying assignment
Given an independent set S of size m.
S has exactly one vertex per clause (because of blue edges)
S does not have 𝑥%, *𝑥% (because of red edges)
So, S gives a satisfying assignment

Satisfying assignment: 𝑥# = 𝐹, 𝑥$ =? , 𝑥% = 𝑇, 𝑥& = 𝑇
𝑥# ∨ 𝑥% ∨ 𝑥& ∧ 𝑥$ ∨ 𝑥& ∨ 𝑥% ∧ 𝑥$ ∨ 𝑥# ∨ 𝑥%

17

𝑥!

𝑥"

𝑥#

𝑥$

𝑥"

𝑥#

𝑥$

𝑥!

𝑥"

What is next?

• CSE 431 (Complexity Course)
• How to prove lower bounds on algorithms?

• CSE 422 (Advanced Toolkit for Modern Alg)
• SVD, Data structures, many programming tasks

• CSE 521 (Graduate Algorithms Course)
Prereq: 312, Math 308
• How to design streaming algorithms?
• How to design algorithms for high dimensional data?
• How to use matrices/eigenvalues/eigenvectors to design algorithms
• How to use LPs to design algorithms?

• CSE 525 (Graduate Randomized Algorithms Course)
Prereq: CSE 521
• How to use randomization to design algorithms?
• How to use Markov Chains to design algorithms?

18

Course Evaluations

• How can we improve this course?

• Did you like topics related to linear programming? Did you like to
see more of that?

• Which topic was most/least interesting to you?

• Which problem sets did you like more?

19

