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Integer Program for Vertex Cover

Given a graph G=(V,E) with costs 𝑐! on the vertices. Find a 
vertex cover of G with minimum cost, i.e., min∑!∈# 𝑐!

Write LP with Integrality Constraint:
• Variables: One variable 𝑥! for each vertex v
• Bound: 𝑥! ∈ {0,1}
• Edge cover Constraints: 𝑥$ + 𝑥! ≥ 1 for every edge 

𝑢, 𝑣 ∈ 𝐸
• Obj: min∑! 𝑐!𝑥!
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IP for Vertex Cover

4

𝑚𝑖𝑛 5
!

𝑐!𝑥!

𝑠. 𝑡. , 𝑥! + 𝑥$ ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥! ∈ {0,1} ∀𝑣 ∈ 𝑉

Fact: OPT-IP = Min Vertex Cover
Pf: 

• For min vertex cover 𝑆, 𝑥! = =1 if 𝑣 ∈ 𝑆
0 o.w. is feasible, so

OPT-IP ≤ Min Vertex Cover
• For optimum solution 𝑥, the 𝑆 = {𝑣: 𝑥! = 1} is a 
vertex cover

Min Vertex Cover ≤ OPT-IP

IP is NP-complete general!
But there are fast algorithms in 

practice that often work



LP Relaxation Vertex Cover
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𝑚𝑖𝑛 5
!

𝑐!𝑥!

𝑠. 𝑡. , 𝑥! + 𝑥$ ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥! ≤ 1 ∀𝑣 ∈ 𝑉

Fact: OPT-LP≤ Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?



Bad Optimum solutions
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𝑚𝑖𝑛 5
!

𝑐!𝑥!

𝑠. 𝑡. , 𝑥! + 𝑥$ ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥! ≤ 1 ∀𝑣 ∈ 𝑉

𝐾! complete graph

A feasible solution:
Set 𝑥" = 0.5 for all 𝑣

in the complete graph

If 𝑐" = 1 for all v, then 
Min vertex cover=𝑛 − 1
But OPT LP=n/2.



Approximation Alg for Vertex Cover

Given a graph G=(V,E) with costs 𝑐! on the edges. Find a 
vertex cover of G with minimum cost, i.e., min∑!∈# 𝑐!

Thm: There is a 2-approximation Alg for weighted vertex 
cover.
ALG: Solve LP. Let 𝑆 = 𝑣: 𝑥! ≥ 0.5 . Output S.

Pf: First, for every edge (𝑢, 𝑣), 𝑥$ + 𝑥! ≥ 1 So at least one 
is in S. So, S is a vertex cover. 
Second,
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5
!∈#

𝑐! ≤5
!∈#

𝑐! 2𝑥! ≤ 2OPTLP ≤2Min Vertex Cov



Intro to Duality
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max 𝑥! + 2𝑥"
s. t. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

Optimum solution: 𝑥# = 5/4 and 𝑥$ = 1/4 with value 𝑥# + 2𝑥$ = 7/4
How can you prove an upper-bound on the optimum?

First attempt: Since 𝑥#, 𝑥$ ≥ 0
𝑥# + 2𝑦$ ≤ 𝑥# + 3𝑥$ ≤ 2

Second attempt: 

𝑥# + 2𝑥$ ≤
2
3
𝑥# + 3𝑥$ +

1
3
2𝑥# + 2𝑥$ ≤

2
3
2 +

1
3
3 =

7
3

Third attempt: 

𝑥# + 2𝑥$ ≤
1
2 𝑥# + 3𝑥$ +

1
4 2𝑥# + 2𝑥$ ≤

1
2 (2) +

1
4 (3) =

7
4



Dual Certificate

Goal: Minimize 2𝑦% + 3𝑦&

But, we must make sure the sum of the LHS is at most 
objective, i.e.,

𝑥% + 2𝑥& ≤ 𝑦% 𝑥% + 3𝑥& + 𝑦& 2𝑥% + 2𝑥&
In other words,

1 ≤ 1 ⋅ 𝑦% + 2 ⋅ 𝑦&
2 ≤ 3 ⋅ 𝑦% + 2 ⋅ 𝑦& ≥

Finally, 𝑦%, 𝑦& ≥ 0 (else the direction of inequalities change)
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𝑚𝑎𝑥 𝑥! + 2𝑥"
𝑠. 𝑡. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

𝑦#
𝑦$



Dual Program
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max 𝑥! + 2𝑥"
s. t. , 𝑥! + 3𝑥" ≤ 2

2𝑥! + 2𝑥" ≤ 3
𝑥!, 𝑥" ≥ 0

min 2𝑦! + 3𝑦"
s. t. , 𝑦! + 2𝑦" ≥ 1

3𝑦! + 2𝑦" ≥ 2
𝑦!, 𝑦" ≥ 0

OPT: 𝑥# = 5/4 and 𝑥$ = 1/4
Value 7/4

OPT: 𝑦# = 1/2 and 𝑦$ = 1/4
Value 7/4



Dual of Standard LP
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max 𝑐, 𝑥
s. t. , 𝑎!, 𝑥 ≤ 𝑏!

𝑎", 𝑥 ≤ 𝑏"
⋮

𝑎#, 𝑥 ≤ 𝑏#
𝑥!, … , 𝑥$ ≥ 0

min 𝑏, 𝑦
s. t. , 𝑎!,!𝑦! +⋯+ 𝑎#,!𝑦# ≥ 𝑐!

𝑎!,"𝑦! +⋯+ 𝑎#,"𝑦# ≥ 𝑐"
⋮

𝑎!,$𝑦! +⋯+ 𝑎#,$𝑦# ≥ 𝑐$
𝑦!, … , 𝑦# ≥ 0

𝑦#
𝑦$

𝑦%

𝑚𝑎𝑥 ⟨𝑐, 𝑥⟩
s. t. , 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

𝑚𝑖𝑛 ⟨𝑏, 𝑦⟩
s. t. , 𝐴&𝑦 ≥ 𝑏

𝑦 ≥ 0

Primal Dual



Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every 
solution to the dual

𝑐, 𝑥 ≤ 𝑏, 𝑦

Thm (strong duality): If primal has a solution and dual has a 
solution then optimum of primal is equal to optimum of dual
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Dual of Max-Flow
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max <
& '() '* +

𝑥&

𝑠. 𝑡. <
& ,-. ,/ 0

𝑥& =<
& 1$ ., 0

𝑥& ∀𝑣 ≠ 𝑠, 𝑡

𝑥& ≤ 𝑐 𝑒 ∀𝑒
𝑥& ≥ 0 ∀𝑒

min 𝑐, 𝑎
s. t. , 𝑎& + 𝑏0 ≥ 1 𝑒 = (𝑠, 𝑣)

𝑎& − 𝑏0 ≥ 0 𝑒 = (𝑣, 𝑡)
𝑎& + 𝑏- − 𝑏0 ≥ 0 other 𝑒 = 𝑢, 𝑣

𝑎& ≥ 0 ∀𝑒

𝑎'

𝑏"
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min 𝑐, 𝑎
s. t. , 𝑎' + 𝑏" ≥ 1 𝑒 = (𝑠, 𝑣)

𝑎' − 𝑏" ≥ 0 𝑒 = (𝑣, 𝑡)
𝑎' + 𝑏( − 𝑏" ≥ 0 other 𝑒 = 𝑢, 𝑣

𝑎' ≥ 0 ∀𝑒

min 𝑐, 𝑎
s. t. , 𝑎' = max(0,1 − 𝑏") 𝑒 = (𝑠, 𝑣)

𝑎' = max(0, 𝑏") 𝑒 = 𝑣, 𝑡
𝑎' = max(0, 𝑏" − 𝑏() other 𝑒 = (𝑢, 𝑣)
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𝑏) = 1

𝑏* = 0

Lem: In OPT 0 ≤ 𝑏" ≤ 1 for all v
Pf: If not, move up/down the 
value only decreases

min 𝑐, 𝑎
s. t. , 𝑎' = max(0,1 − 𝑏") 𝑒 = (𝑠, 𝑣)

𝑎' = max(0, 𝑏") 𝑒 = 𝑣, 𝑡
𝑎' = max(0, 𝑏" − 𝑏() other 𝑒 = (𝑢, 𝑣)
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min 𝑐, 𝑎
s. t. , 𝑏) = 1, 𝑏* = 0

0 ≤ 𝑏" ≤ 1
𝑎' = max 0, 𝑏" −𝑏( 𝑒 = 𝑢, 𝑣

𝑏) = 1

𝑏* = 0

Lem: In OPT 0 ≤ 𝑏" ≤ 1 for all v

Pf: If not, move up/down the 
value only decreases

Lem: In OPT 𝑏" ∈ {0,1} for all v
Pf: If not, choose a u.r. 0 ≤ 𝑡 ≤ 1
If 𝑏" ≥ 𝑡 set 𝑏" = 1 else set 𝑏" = 0.
Then, the expected value of 
resulting solution sames as OPT.
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min 𝑐, 𝑎
s. t. , 𝑏) = 1, 𝑏* = 0

0 ≤ 𝑏" ≤ 1
𝑎' = max 0, 𝑏" −𝑏( other 𝑒 = 𝑢, 𝑣

𝑏) = 1

𝑏* = 0

Lem: In OPT 0 ≤ 𝑏" ≤ 1 for all v

Pf: If not, move up/down the 
value only decreases

Lem: In OPT 𝑏" ∈ {0,1} for all v
Pf: If not, choose a u.r. 0 ≤ 𝑡 ≤ 1
If 𝑏" ≥ 𝑡 set 𝑏" = 1 else set 𝑏" = 0.
Then, the expected value of 
resulting solution sames as OPT.
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min 𝑐, 𝑎
s. t. , 𝑏) = 1, 𝑏* = 0

𝑏" ∈ {0,1}
𝑎' = max 0, 𝑏" −𝑏( other 𝑒 = 𝑢, 𝑣

Min Cut!



Beyond LP: Convex Programming

A function 𝑓:ℝ → ℝ is convex if 𝑓22 ≥ 0.

e.g., 𝑓 𝑥 = 𝑥".

A function 𝑓:ℝ3 → ℝ is convex if ∇"𝑓 ≽ 0

19

min 𝑓 𝑥
s. t. , 𝑔# 𝑥 ≤ 𝑏#

𝑔$ 𝑥 ≤ 𝑏$
⋮

𝑔% 𝑥 ≤ 𝑏%

Convex Program

𝑓 and 𝑔#, … , 𝑔% must be convex.
≥ and = are not allows!



Example
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max 𝑐%𝑥% + 𝑐&𝑥&
s. t. , 𝑥%& + 𝑥&& ≤ 1

𝑐

𝑥#

𝑥$



Summary (Linear Programming)

• Linear programming is one of the biggest advances in 20th
century

• It is being used in many areas of science: Mechanics, 
Physics, Operations Research, and in CS: AI, Machine 
Learning, Theory, …

• Almost all problems that we talked can be solved with LPs, 
Why not use LPs?
• Combinatorial algorithms are typically faster
• They exhibit a better understanding of worst case instances of a 

problem
• They give certain structural properties, e.g., Integrality of Max-flow when 

capacities are integral

• There is rich theory of LP-duality which generalizes max-flow 
min-cut theorem
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