CSE 421

LP Duality

Shayan Oveis Gharan

Linear Programming and Approximation Algorithms

Integer Program for Vertex Cover

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with costs c_{v} on the vertices. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_{v}$

Write LP with Integrality Constraint:

- Variables: One variable x_{v} for each vertex v
- Bound: $x_{v} \in\{0,1\}$
- Edge cover Constraints: $x_{u}+x_{v} \geq 1$ for every edge $(u, v) \in E$
- Obj: $\min \sum_{v} c_{v} x_{v}$

IP for Vertex Cover

s.t., $\quad x_{v}+x_{u} \geq 1 \quad \forall(u, v) \in E$

$$
x_{v} \in\{0,1\} \quad \forall v \in V
$$

IP is NP-complete general!
Fact: But there are fast algorithms in practice that often work

- For min vertex cover $S, x_{v}=\left\{\begin{array}{cc}1 & \text { if } v \in S \\ 0 & \text { o. w. }\end{array}\right.$ is feasible, so OPT-IP \leq Min Vertex Cover
- For optimum solution x, the $S=\left\{v: x_{v}=1\right\}$ is a vertex cover

Min Vertex Cover \leq OPT-IP

LP Relaxation Vertex Cover

$$
\begin{array}{lcc}
\min & \sum_{v} c_{v} x_{v} & \\
& \\
\text { s.t., } & x_{v}+x_{u} \geq 1 & \forall(u, v) \in E \\
& 0 \leq x_{v} \leq 1 & \forall v \in V
\end{array}
$$

Fact: OPT-LP \leq Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?

Bad Optimum solutions

$$
\begin{array}{lcc}
\min & \sum_{v} c_{v} x_{v} & \\
& \\
\text { s.t., } & x_{v}+x_{u} \geq 1 & \forall(u, v) \in E \\
& 0 \leq x_{v} \leq 1 & \forall v \in V
\end{array}
$$

K_{n} complete graph

A feasible solution: Set $x_{v}=0.5$ for all v in the complete graph

If $c_{v}=1$ for all v , then Min vertex cover= $n-1$ But OPT LP=n/2.

Approximation Alg for Vertex Cover

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with costs c_{v} on the edges. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_{v}$

Thm: There is a 2-approximation Alg for weighted vertex cover.
ALG: Solve LP. Let $S=\left\{v: x_{v} \geq 0.5\right\}$. Output S.

Pf: First, for every edge (u, v), $x_{u}+x_{v} \geq 1$ So at least one is in S . So, S is a vertex cover.
Second,

$$
\sum_{v \in S} c_{v} \leq \sum_{v \in S} c_{v}\left(2 x_{v}\right) \leq 20 \mathrm{PTLP} \leq 2 \text { Min Vertex Cov }
$$

Intro to Duality

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Optimum solution: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ with value $x_{1}+2 x_{2}=7 / 4$ How can you prove an upper-bound on the optimum?

First attempt: Since $x_{1}, x_{2} \geq 0$

$$
x_{1}+2 y_{2} \leq x_{1}+3 x_{2} \leq 2
$$

Second attempt:

$$
x_{1}+2 x_{2} \leq \frac{2}{3}\left(x_{1}+3 x_{2}\right)+\frac{1}{3}\left(2 x_{1}+2 x_{2}\right) \leq \frac{2}{3}(2)+\frac{1}{3}(3)=\frac{7}{3}
$$

Third attempt:

$$
x_{1}+2 x_{2} \leq \frac{1}{2}\left(x_{1}+3 x_{2}\right)+\frac{1}{4}\left(2 x_{1}+2 x_{2}\right) \leq \frac{1}{2}(2)+\frac{1}{4}(3)=\frac{7}{4}
$$

Dual Certificate

$$
\begin{array}{lcc}
\max & x_{1}+2 x_{2} & \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 & y_{1} \\
& 2 x_{1}+2 x_{2} \leq 3 & y_{2} \\
& x_{1}, x_{2} \geq 0 &
\end{array}
$$

Goal: Minimize $2 y_{1}+3 y_{2}$
But, we must make sure the sum of the LHS is at most objective, i.e.,

$$
x_{1}+2 x_{2} \leq y_{1}\left(x_{1}+3 x_{2}\right)+y_{2}\left(2 x_{1}+2 x_{2}\right)
$$

In other words,

$$
\begin{gathered}
1 \leq 1 \cdot y_{1}+2 \cdot y_{2} \\
2 \leq 3 \cdot y_{1}+2 \cdot y_{2} \geq
\end{gathered}
$$

Finally, $y_{1}, y_{2} \geq 0$ (else the direction of inequalities change)

Dual Program

$$
\begin{array}{cc}
\max & x_{1}+2 x_{2} \\
\text { s.t., } & x_{1}+3 x_{2} \leq 2 \\
& 2 x_{1}+2 x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

OPT: $x_{1}=5 / 4$ and $x_{2}=1 / 4$ Value 7/4
$\min \quad 2 y_{1}+3 y_{2}$
s.t., $\quad y_{1}+2 y_{2} \geq 1$
$3 y_{1}+2 y_{2} \geq 2$
$y_{1}, y_{2} \geq 0$
OPT: $y_{1}=1 / 2$ and $y_{2}=1 / 4$
Value $7 / 4$

Dual of Standard LP

\max	$\langle c, x\rangle$	
s.t.,	$\left\langle a_{1}, x\right\rangle \leq b_{1}$	y_{1}
	$\left\langle a_{2}, x\right\rangle \leq b_{2}$	y_{2}
	\vdots	
	$\left\langle a_{m}, x\right\rangle \leq b_{m}$	y_{m}
	$x_{1}, \ldots, x_{n} \geq 0$	

$$
\begin{array}{cc}
\min & \langle b, y\rangle \\
\text { s.t., } & a_{1,1} y_{1}+\cdots+a_{m, 1} y_{m} \geq c_{1} \\
& a_{1,2} y_{1}+\cdots+a_{m, 2} y_{m} \geq c_{2} \\
& \vdots \\
& a_{1, n} y_{1}+\cdots+a_{m, n} y_{m} \geq c_{n} \\
& y_{1}, \ldots, y_{m} \geq 0
\end{array}
$$

\max	$\langle c, x\rangle$
s.t.,	$A x \leq b$
	$x \geq 0$

Primal

\min	$\langle b, y\rangle$
s.t.,	$A^{T} y \geq b$
	$y \geq 0$
	Dual

Facts About Linear Programs

Lem: Dual of Dual = Primal

Thm (weak duality): Every solution to the primal is at most every solution to the dual

$$
\langle c, x\rangle \leq\langle b, y\rangle
$$

Thm (strong duality): If primal has a solution and dual has a solution then optimum of primal is equal to optimum of dual

Dual of Max-Flow

$$
\begin{array}{llll}
\max & \sum_{e \text { out of } s} x_{e} \\
\text { s.t. } & \sum_{e \text { out of } v} x_{e}=\sum_{e \text { in to } v} x_{e} & \forall v \neq s, t & b_{v} \\
& x_{e} \leq c(e) & \forall e & a_{e} \\
& x_{e} \geq 0 & \forall e &
\end{array}
$$

min
s.t.,

$$
\begin{array}{cc}
\langle c, a\rangle & \\
a_{e}+b_{v} \geq 1 & e=(s, v) \\
a_{e}-b_{v} \geq 0 & e=(v, t) \\
a_{e}+b_{u}-b_{v} \geq 0 & \text { other } e=(u, v) \\
a_{e} \geq 0 & \forall e
\end{array}
$$

$$
\begin{array}{ccc}
\min & \langle c, a\rangle & \\
\text { s.t., } & a_{e}+b_{v} \geq 1 & e=(s, v) \\
& a_{e}-b_{v} \geq 0 & e=(v, t) \\
& a_{e}+b_{u}-b_{v} \geq 0 & \text { other } e=(u, v) \\
& a_{e} \geq 0 & \forall e
\end{array}
$$

$$
\begin{array}{lcc}
\min & \langle c, a\rangle & \\
\text { s.t. }, & a_{e}=\max \left(0,1-b_{v}\right) & e=(s, v) \\
& a_{e}=\max \left(0, b_{v}\right) & e=(v, t) \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) & \text { other } e=(u, v)
\end{array}
$$

\min $\langle c, a\rangle$
s.t.,

$$
\begin{array}{cc}
a_{e}=\max \left(0,1-b_{v}\right) & e=(s, v) \\
a_{e}=\max \left(0, b_{v}\right) & e=(v, t) \\
a_{e}=\max \left(0, b_{v}-b_{u}\right) & \text { other } e=(u, v)
\end{array}
$$

Lem: In OPT $0 \leq b_{v} \leq 1$ for all v Pf: If not, move up/down the value only decreases

$$
b_{s}=1
$$

s.t.,

$$
\begin{aligned}
& b_{s}=1, b_{t}=0 \\
& \quad 0 \leq b_{v} \leq 1 \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad e=(u, v)
\end{aligned}
$$

Lem: \ln OPT $0 \leq b_{v} \leq 1$ for all v
Pf: If not, move up/down the value only decreases

Lem: In OPT $b_{v} \in\{0,1\}$ for all v Pf: If not, choose a u.r. $0 \leq t \leq 1$ If $b_{v} \geq t$ set $b_{v}=1$ else set $b_{v}=0$.
Then, the expected value of resulting solution sames as OPT.
min

$$
\begin{aligned}
& \langle c, a\rangle \\
& b_{s}=1, b_{t}=0 \\
& 0 \leq b_{v} \leq 1 \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad \text { other } e=(u, v)
\end{aligned}
$$

s.t. ,

Lem: \ln OPT $0 \leq b_{v} \leq 1$ for all v
Pf: If not, move up/down the value only decreases

Lem: In OPT $b_{v} \in\{0,1\}$ for all v Pf: If not, choose a u.r. $0 \leq t \leq 1$ If $b_{v} \geq t$ set $b_{v}=1$ else set $b_{v}=0$.
Then, the expected value of resulting solution sames as OPT.
$b_{s}=1$

$$
b_{t}=0
$$

$$
\begin{array}{ll}
\min & \langle c, a\rangle \\
\text { s.t. } & b_{s}=1, b_{t}=0 \\
& b_{v} \in\{0,1\} \\
& a_{e}=\max \left(0, b_{v}-b_{u}\right) \quad \text { other } e=(u, v)
\end{array}
$$

Min Cut!

Beyond LP: Convex Programming

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if $f^{\prime \prime} \geq 0$.
e.g., $f(x)=x^{2}$.

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if $\nabla^{2} f \succcurlyeq 0$

$$
\begin{array}{lc}
\text { min } & f(x) \\
\text { s.t., } & g_{1}(x) \leq b_{1} \\
& g_{2}(x) \leq b_{2} \\
& \vdots \\
& g_{m}(x) \leq b_{m}
\end{array}
$$

f and g_{1}, \ldots, g_{m} must be convex.
\geq and $=$ are not allows!

Example

$$
\begin{array}{cc}
\max & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 1
\end{array}
$$

Summary (Linear Programming)

- Linear programming is one of the biggest advances in $20^{\text {th }}$ century
- It is being used in many areas of science: Mechanics, Physics, Operations Research, and in CS: AI, Machine Learning, Theory, ...
- Almost all problems that we talked can be solved with LPs, Why not use LPs?
- Combinatorial algorithms are typically faster
- They exhibit a better understanding of worst case instances of a problem
- They give certain structural properties, e.g., Integrality of Max-flow when capacities are integral
- There is rich theory of LP-duality which generalizes max-flow min-cut theorem

