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Foreground / background segmentation

Label each pixel as foreground/background.
• V = set of pixels, E = pairs of neighboring pixels.
• 𝑎! ≥ 0 is likelihood pixel i in foreground.
• 𝑏! ≥ 0 is likelihood pixel i in background.
• 𝑝!,# ≥ 0 is separation penalty for labeling one of i

and j as foreground, and the other as background.
Goals.
Accuracy:  if ai > bi in isolation, prefer to label i in foreground.
Smoothness: if many neighbors of i are labeled foreground, we should 
be inclined to label i as foreground.
Find partition (A, B) that maximizes:
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Image Seg: Min Cut Formulation

Difficulties:
• Maximization (as opposed to minimization)
• No source or sink
• Undirected graph
Step 1: Turn into Minimization 
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Equivalent to minimizing
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Min cut Formulation (cont’d)

G' = (V', E').
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges

instead of undirected edge.
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Min cut Formulation (cont’d)

Consider min cut (A, B) in G’.  (A = foreground.)

Precisely the quantity we want to minimize.
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Linear Programming 
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System of Linear Equations

Find a solution to

𝑥!−𝑥" = 4
𝑥! − 2𝑥# = 3
𝑥" + 2𝑥# + 𝑥! = 7

Can be solved by Gaussian elimination method in 𝑂 𝑛!
when we have n variables/n constraints
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Linear Algebra Premier

Let 𝑎 be a column vector in ℝ! and 𝑥 a column vector of 𝑑
variables.

𝑎, 𝑥 = 𝑎"𝑥 = 𝑎#𝑥# + 𝑎$𝑥$ +⋯+ 𝑎!𝑥!

Hyperplane: A hyperplane is the set of points 𝑥 such that ⟨𝑎, 𝑥⟩ =
𝑏 for some 𝑏 ∈ ℝ

Halfspace: A halfspace is the set of points on one side of a 
hyperplane. 

𝑥: 𝑎, 𝑥 ≤ 𝑏 𝑜𝑟 {𝑥: 𝑎, 𝑥 ≥ 𝑏}
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Find the smallest point in a polytope
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Linear Programming

Optimize a linear function subject to linear inequalities

max 3𝑥" − 4𝑥!
𝑠. 𝑡. , 𝑥"+𝑥# ≤ 5

𝑥!−𝑥" = 4
𝑥! − 𝑥# ≥ −5
𝑥", 𝑥#, 𝑥! ≥ 0

• We can have equalities and inequalities, 
• We can have a linear objective functions
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Linear Algebra Premier

Let 𝑎 be a column vector in ℝ! and 𝑥 a column vector of 𝑑
variables.

𝑎, 𝑥 = 𝑎"𝑥 = 𝑎#𝑥# + 𝑎$𝑥$ +⋯+ 𝑎!𝑥!
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Linear Programming Standard Form

Any linear program can be translated into the standard form.
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𝑚𝑎𝑥 ⟨𝑐, 𝑥⟩
𝑠. 𝑡. , 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

𝑚𝑖𝑛 𝑦* − 2𝑦)
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with 𝑧) − 𝑧).



Applications of Linear Programming

Generalizes: Ax=b, 2-person zero-sum games, shortest path, 
max-flow, matching, multicommodity flow, MST, min weighted 
arborescence, …

Why significant?
• We can solve linear programming in polynomial time.
• Useful for approximation algorithms
• We can model many practical problems with a linear model 

and solve it with linear programming

Linear Programming in Practice:
• There are very fast implementations: IBM CPLEX, Gorubi in 

Python, CVX in Matlab, ….
• CPLEX can solve LPs with millions of variables/constraints in 

minutes
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Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four 
category of food: veggies, meat, fruits, and dairy. Each category has its 
own (p)rice, (c)alory and (h)appiness per pound:

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb 
of fruits we will be 0.5 ℎ- + 0.2 ℎ/ happy
• You should eat 1500 calories to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?
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veggies meat fruits dairy
price 𝑝! 𝑝" 𝑝# 𝑝$
calorie 𝑐! 𝑐" 𝑐# 𝑐$
happiness ℎ! ℎ" ℎ# ℎ$



Diet Problem by LP

• You should eat 1500 calaroies to be healthy
• You can spend 20 dollars a day on food.
Goal: Maximize happiness?
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veggies meat fruits dairy
price 𝑝! 𝑝" 𝑝# 𝑝$
calorie 𝑐! 𝑐" 𝑐# 𝑐$
happiness ℎ! ℎ" ℎ# ℎ$

max 𝑥%ℎ% + 𝑥&ℎ& + 𝑥'ℎ' + 𝑥!ℎ!
𝑠. 𝑡. 𝑥%𝑝% + 𝑥&𝑝& + 𝑥'𝑝' + 𝑥!𝑝! ≤ 20

𝑥%𝑐% + 𝑥&𝑐& + 𝑥'𝑐' + 𝑥!𝑐! ≤ 1500
𝑥% , 𝑥&, 𝑥' , 𝑥! ≥ 0

#pounds of veggies, meat, fruits, dairy to eat per day



Components of a Linear Program

• Set of variables

• Bounding constraints on variables, 
• Are they nonnegative?

• Objective function

• Is it a minimization or a maximization problem

• LP Constraints, make sure they are linear
• Is it an equality or an inequality?
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Example 2: Max Flow

Define the set of variables
• For every edge 𝑒 let 𝑥0 be the flow on the edge 𝑒

Put bounding constraints on your variables
• 𝑥0 ≥ 0 for all edge e (The flow is nonnegative)

Write down the constraints
• 𝑥0 ≤ 𝑐(𝑒) for every edge e, (Capacity constraints)
• ∑0 123 14 5 𝑥0 = ∑0 67 31 5 𝑥0 ∀𝑣 ≠ 𝑠, 𝑡 (Conservation constraints)

Write down the objective function
• ∑0 123 14 8 𝑥0
Decide if it is a minimize/maximization problem
• max
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Example 2: Max Flow

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral

22

max A
( )*+ ), -

𝑥(

𝑠. 𝑡. A
( ./0 .' %

𝑥( =A
( 12 0. %

𝑥( ∀𝑣 ≠ 𝑠, 𝑡

𝑥( ≤ 𝑐 𝑒 ∀𝑒
𝑥( ≥ 0 ∀𝑒



Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from 𝑠 to 𝑡.
But for every pipe edge 𝑒 we have to pay 𝑝 𝑒
for each gallon of water that we send through 𝑒.

Goal: Send 100 gallons of water from 𝑠 to 𝑡 with minimum 
possible cost
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Linear Programming 
and Approximation Algorithms
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Integer Program for Vertex Cover

Given a graph G=(V,E) with costs 𝑐' on the vertices. Find a 
vertex cover of G with minimum cost, i.e., min∑'∈) 𝑐'

Write LP with Integrality Constraint:
• Variables: One variable 𝑥' for each vertex v
• Bound: 𝑥' ∈ {0,1}
• Edge cover Constraints: 𝑥* + 𝑥' ≥ 1 for every edge 

𝑢, 𝑣 ∈ 𝐸
• Obj: min∑' 𝑐'𝑥'

25



IP for Vertex Cover
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𝑚𝑖𝑛 H
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
𝑥' ∈ {0,1} ∀𝑣 ∈ 𝑉

Fact: The optimum solution of the above program is 
min vertex cover.
Pf: 

• First, any vertex cover 𝑆, 𝑥' = L1 if 𝑣 ∈ 𝑆
0 o.w. is feasible

• For any feasible solution 𝑥, the 𝑆 = {𝑣: 𝑥' = 1} is a 
vertex cover

IP is NP-complete general!
But there are fast algorithms in 

practice that often work



LP Relaxation Vertex Cover
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𝑚𝑖𝑛 H
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥' ≤ 1 ∀𝑣 ∈ 𝑉

Fact: OPT-LP≤ Min Vertex Cover
Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?



Bad Optimum solutions
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𝑚𝑖𝑛 H
'

𝑐'𝑥'

𝑠. 𝑡. , 𝑥' + 𝑥* ≥ 1 ∀ 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥' ≤ 1 ∀𝑣 ∈ 𝑉

𝐾: complete graph

A feasible solution:
Set 𝑥5 = 0.5 for all 𝑣

in the complete graph

If 𝑐5 = 1 for all v, then 
Min vertex cover=𝑛 − 1
But OPT LP=n/2.



Approximation Alg for Vertex Cover

Given a graph G=(V,E) with costs 𝑐' on the edges. Find a 
vertex cover of G with minimum cost, i.e., min∑'∈) 𝑐'

Thm: There is a 2-approximation Alg for weighted vertex 
cover.
ALG: Solve LP. Let 𝑆 = 𝑣: 𝑥' ≥ 0.5 . Output S.

Pf: First, for every edge (𝑢, 𝑣), 𝑥* + 𝑥' ≥ 1 So at least one 
is in S. So, S is a vertex cover. 
Second,
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