Foreground / background segmentation

Label each pixel as foreground/background.

- $V = \text{set of pixels, } E = \text{pairs of neighboring pixels.}$
- $a_i \geq 0$ is likelihood pixel i in foreground.
- $b_i \geq 0$ is likelihood pixel i in background.
- $p_{i,j} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.

Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.

Find partition (A, B) that maximizes:

$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{i,j}$$

Foreground

Background
Difficulties:
- Maximization (as opposed to minimization)
- No source or sink
- Undirected graph

Step 1: Turn into Minimization

Maximizing
\[
\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j}
\]

Equivalent to minimizing
\[
\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j}
\]

Equivalent to minimizing
\[
\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E \atop i \in A, j \in B} p_{i,j}
\]
Min cut Formulation (cont’d)

$G' = (V', E')$.
Add s to correspond to foreground;
Add t to correspond to background
Use two anti-parallel edges
instead of undirected edge.

\[p_{ij} \quad a_{ij} \quad b_i \]
Min cut Formulation (cont’d)

Consider min cut \((A, B)\) in \(G’\). \((A = \text{foreground.})\)

\[
cap(A, B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E} p_{i,j}
\]

Precisely the quantity we want to minimize.
Linear Programming
System of Linear Equations

Find a solution to

\[\begin{align*}
 x_3 - x_1 &= 4 \\
 x_3 - 2x_2 &= 3 \\
 x_1 + 2x_2 + x_3 &= 7
\end{align*} \]

Can be solved by Gaussian elimination method in \(O(n^3) \) when we have \(n \) variables/n constraints
Let \(a \) be a column vector in \(\mathbb{R}^d \) and \(x \) a column vector of \(d \) variables.

\[
\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d
\]

Hyperplane: A hyperplane is the set of points \(x \) such that \(\langle a, x \rangle = b \) for some \(b \in \mathbb{R} \)

Halfspace: A halfspace is the set of points on one side of a hyperplane.

\[
\{ x : \langle a, x \rangle \leq b \} \quad \text{or} \quad \{ x : \langle a, x \rangle \geq b \}
\]
\[3x_2 + x_1 = 0\]

\[a = \begin{pmatrix} 1 \\ 3 \end{pmatrix}\]
\[3x_2 + x_1 \leq 0 \]

\[a = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \]
\[3x_2 + x_1 \leq -3 \]

\[a = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \]
Find the smallest point in a polytope
\[
\begin{align*}
\text{min} & \quad x_2 \\
\text{s. t.} & \quad \langle a_1, x \rangle \leq b_1 \\
& \quad \langle a_2, x \rangle \geq b_2 \\
& \quad \langle a_3, x \rangle \geq b_3 \\
& \quad \ldots
\end{align*}
\]
Linear Programming

Optimize a linear function subject to linear inequalities

\[
\begin{align*}
\text{max} & \quad 3x_1 - 4x_3 \\
\text{s.t.} & \quad x_1 + x_2 \leq 5 \\
& \quad x_3 - x_1 = 4 \\
& \quad x_3 - x_2 \geq -5 \\
& \quad x_1, x_2, x_3 \geq 0
\end{align*}
\]

- We can have equalities and inequalities,
- We can have a linear objective functions
Let \(a \) be a column vector in \(\mathbb{R}^d \) and \(x \) a column vector of \(d \) variables.

\[
\langle a, x \rangle = a^T x = a_1 x_1 + a_2 x_2 + \cdots + a_d x_d
\]

\[
A = \begin{bmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_m^T
\end{bmatrix}
\]

\[
Ax = \begin{pmatrix}
 \langle a_1, x \rangle \\
 \langle a_2, x \rangle \\
 \vdots \\
 \langle a_m, x \rangle
\end{pmatrix}
\]

\[
Ax \leq b
\]

\[
\begin{aligned}
 \langle a_1, x \rangle &\leq b_1 \\
 \langle a_2, x \rangle &\leq b_2 \\
 \vdots \\
 \langle a_m, x \rangle &\leq b_m
\end{aligned}
\]
Linear Programming Standard Form

\[\text{max} \quad \langle c, x \rangle \]
\[\text{s.t.,} \quad Ax \leq b \]
\[x \geq 0 \]

Any linear program can be translated into the standard form.

\[\text{min} \quad y_1 - 2y_2 \]
\[\text{s.t.,} \quad y_1 + 2y_2 = 3 \]
\[y_1 - y_2 \geq 1 \]
\[y_1 \geq 0 \]

Replace \(y_2 \) with \(z_2 - z'_2 \)

\[\text{max} \quad -y_1 + 2(z_2 - z'_2) \]
\[\text{s.t.,} \quad y_1 + 2(z_2 - z'_2) \leq 3 \]
\[-(y_1 + 2(z_2 - z'_2)) \leq -3 \]
\[-(y_1 - (z_2 - z'_2)) \leq -1 \]
\[y_1, z_2, z'_2 \geq 0 \]
Applications of Linear Programming

Generalizes: $Ax=b$, 2-person zero-sum games, shortest path, max-flow, matching, multicommodity flow, MST, min weighted arborescence, ...

Why significant?
• We can solve linear programming in polynomial time.
• Useful for approximation algorithms
• We can model many practical problems with a linear model and solve it with linear programming

Linear Programming in Practice:
• There are very fast implementations: IBM CPLEX, Gorubi in Python, CVX in Matlab, ...
• CPLEX can solve LPs with millions of variables/constraints in minutes
Example 1: Diet Problem

Suppose you want to schedule a diet for yourself. There are four categories of food: veggies, meat, fruits, and dairy. Each category has its own (p)rice, (c)alory and (h)appiness per pound:

<table>
<thead>
<tr>
<th></th>
<th>veggies</th>
<th>meat</th>
<th>fruits</th>
<th>dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>p_v</td>
<td>p_m</td>
<td>p_f</td>
<td>p_d</td>
</tr>
<tr>
<td>calorie</td>
<td>c_v</td>
<td>c_m</td>
<td>c_f</td>
<td>c_d</td>
</tr>
<tr>
<td>happiness</td>
<td>h_v</td>
<td>h_m</td>
<td>h_f</td>
<td>h_d</td>
</tr>
</tbody>
</table>

Linear Modeling: Consider a linear model: If we eat 0.5lb of meat, 0.2lb of fruits we will be $0.5 \cdot h_m + 0.2 \cdot h_f$ happy

- You should eat 1500 calories to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?
Diet Problem by LP

- You should eat 1500 calaroies to be healthy
- You can spend 20 dollars a day on food.

Goal: Maximize happiness?

<table>
<thead>
<tr>
<th></th>
<th>veggies</th>
<th>meat</th>
<th>fruits</th>
<th>dairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>p_v</td>
<td>p_m</td>
<td>p_f</td>
<td>p_d</td>
</tr>
<tr>
<td>calorie</td>
<td>c_v</td>
<td>c_m</td>
<td>c_f</td>
<td>c_d</td>
</tr>
<tr>
<td>happiness</td>
<td>h_v</td>
<td>h_m</td>
<td>h_f</td>
<td>h_d</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{max} & \quad x_v h_v + x_m h_m + x_f h_f + x_d h_d \\
\text{s.t.} & \quad x_v p_v + x_m p_m + x_f p_f + x_d p_d \leq 20 \\
& \quad x_v c_v + x_m c_m + x_f c_f + x_d c_d \leq 1500 \\
& \quad x_v, x_m, x_f, x_d \geq 0
\end{align*}
\]

#pounds of veggies, meat, fruits, dairy to eat per day
Components of a Linear Program

• Set of variables

• Bounding constraints on variables,
 • Are they nonnegative?

• Objective function

• Is it a minimization or a maximization problem

• LP Constraints, make sure they are linear
 • Is it an equality or an inequality?
Example 2: Max Flow

Define the set of variables
• For every edge e let x_e be the flow on the edge e

Put bounding constraints on your variables
• $x_e \geq 0$ for all edge e (The flow is nonnegative)

Write down the constraints
• $x_e \leq c(e)$ for every edge e, (Capacity constraints)
• $\sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e \; \forall v \neq s, t$ (Conservation constraints)

Write down the objective function
• $\sum_{e \text{ out of } s} x_e$

Decide if it is a minimize/maximization problem
• max
Example 2: Max Flow

Q: Do we get exactly the same properties as Ford Fulkerson?
A: Not necessarily, the max-flow may not be integral
Example 3: Min Cost Max Flow

Suppose we can route 100 gallons of water from s to t. But for every pipe edge e we have to pay $p(e)$ for each gallon of water that we send through e.

Goal: Send 100 gallons of water from s to t with minimum possible cost

\[
\begin{align*}
\min & \quad \sum_{e \in E} p(e) \cdot x_e \\
\text{s.t.} & \quad \sum_{e \text{ out of } v} x_e = \sum_{e \text{ into } v} x_e \quad \forall v \neq s, t \\
& \quad \sum_{e \text{ out of } s} x_e = 100 \\
& \quad x_e \leq c(e) \quad \forall e \\
& \quad x_e \geq 0 \quad \forall e
\end{align*}
\]
Linear Programming and Approximation Algorithms
Integer Program for Vertex Cover

Given a graph $G=(V,E)$ with costs c_v on the vertices. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_v$

Write LP with Integrality Constraint:
- Variables: One variable x_v for each vertex v
- Bound: $x_v \in \{0,1\}$
- Edge cover Constraints: $x_u + x_v \geq 1$ for every edge $(u, v) \in E$
- Obj: $\min \sum_v c_v x_v$
IP for Vertex Cover

\[
\min \sum_v c_v x_v \\
\text{s.t., } x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
x_v \in \{0, 1\} \quad \forall v \in V
\]

IP is NP-complete general!
But there are fast algorithms in practice that often work

Fact: The optimum solution of the above program is min vertex cover.

Pf:

• First, any vertex cover \(S \), \(x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{o.w.} \end{cases} \) is feasible
• For any feasible solution \(x \), the \(S = \{ v : x_v = 1 \} \) is a vertex cover
LP Relaxation Vertex Cover

\[
\begin{align*}
\min & \quad \sum_v c_v x_v \\
\text{s.t.} & \quad x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
& \quad 0 \leq x_v \leq 1 \quad \forall v \in V
\end{align*}
\]

Fact: \(\text{OPT-LP} \leq \text{Min Vertex Cover} \)

Pf: Min vertex cover is a feasible solution of the LP

Q: Can we hope to get an integer solution?
Bad Optimum solutions

\[
\text{min } \sum_{v} c_v x_v \\
\text{s.t., } x_v + x_u \geq 1 \quad \forall (u, v) \in E \\
0 \leq x_v \leq 1 \quad \forall v \in V
\]

A feasible solution:

Set \(x_v = 0.5 \) for all \(v \) in the complete graph

If \(c_v = 1 \) for all \(v \), then
Min vertex cover=\(n - 1 \)
But OPT LP=\(n/2 \).
Approximation Alg for Vertex Cover

Given a graph $G=(V,E)$ with costs c_v on the edges. Find a vertex cover of G with minimum cost, i.e., $\min \sum_{v \in S} c_v$

Thm: There is a 2-approximation Alg for weighted vertex cover.

ALG: Solve LP. Let $S = \{ v : x_v \geq 0.5 \}$. Output S.

Pf: First, for every edge (u, v), $x_u + x_v \geq 1$ So at least one is in S. So, S is a vertex cover.

Second,

$$\sum_{v \in S} c_v \leq \sum_{v \in S} c_v (2x_v) \leq 2 \text{OPTLP} \leq \text{Min Vertex Cov}$$