CSE 421

Network Flows, Matching

Shayan Oveis Gharan
Applications of Max Flow: Bipartite Matching
Maximum Matching Problem

Given an undirected graph $G = (V, E)$.
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.
Bipartite Matching Problem

Given an undirected bipartite graph $G = (X \cup Y, E)$, a set $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Goal: find a matching with largest cardinality.
Bipartite Matching using Max Flow

Create digraph H as follows:
- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.

![Diagram of digraph H showing oriented edges and capacities]
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.

Pf. \leq

Given max matching M of cardinality k.
Consider flow f that sends 1 unit along each of k edges of M.
f is a flow, and has cardinality k. □
Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in G = value of max flow in H.

Pf. (of ≥) Let f be a max flow in H of value k.

Integrality theorem \Rightarrow k is integral and we can assume f is 0-1.

Consider M = set of edges from X to Y with $f(e) = 1$.

- each node in X and Y participates in at most one edge in M
- $|M| = k$: consider s-t cut $(s \cup X, t \cup Y)$
Perfect Bipartite Matching
Perfect Bipartite Matching

Def. A matching \(M \subseteq E \) is **perfect** if each node appears in exactly one edge in \(M \).

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings:
- Clearly we must have \(|X| = |Y|\).
- What other conditions are necessary?
- What conditions are sufficient?
Perfect Bipartite Matching: $N(S)$

Def. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Pf. Each $v \in S$ has to be matched to a unique node in $N(S)$.
Marriage Theorem

Thm: [Frobenius 1917, Hall 1935] Let $G = (X \cup Y, E)$ be a bipartite graph with $|X| = |Y|$.

Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq X$.

Pf. ⇒

This was the previous observation.

If $|N(S)| < |S|$ for some S, then there is no perfect matching.
Marriage Theorem

Pf. \(\exists S \subseteq X \) s.t., \(|N(S)| < |S| \) \(\iff \) G does not a perfect matching

Formulate as a max-flow and let \((A, B)\) be the min s-t cut

G has no perfect matching \(\Rightarrow \) \(v(f^*) < |X| \). So, \(\text{cap}(A, B) < |X| \)

Define \(X_A = X \cap A, X_B = X \cap B, Y_A = Y \cap A \)

Then, \(\text{cap}(A, B) = |X_B| + |Y_A| \)

Since min-cut does not use \(\infty \) edges, \(N(X_A) \subseteq Y_A \)

\[|N(X_A)| \leq |Y_A| = \text{cap}(A, B) - |X_B| = \text{cap}(A, B) - |X| + |X_A| < |X_A| \]
Bipartite Matching Running Time

Which max flow algorithm to use for bipartite matching?

Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
Capacity scaling: $O(m^2 \log C) = O(m^2)$.
Shortest augmenting path: $O(m n^{1/2})$.
Recent algorithms $O(m^{1+o(1)})$ [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’22]

Non-bipartite matching.

Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
Blossom algorithm: $O(n^4)$. [Edmonds 1965]
Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]
Edge Disjoint Paths
Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
Max Flow Formulation

Assign a unit capacity to every edge. Find Max flow from s to t.

Thm. Max number edge-disjoint s-t paths equals max flow value.
Pf. ≤
Suppose there are k edge-disjoint paths $P_1, ..., P_k$.
Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$.
Since paths are edge-disjoint, f is a flow of value k. ▪
Max Flow Formulation

Thm. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≥ Suppose max flow value is k

Integrality theorem \Rightarrow there exists 0-1 flow f of value k.

Consider edge (s, u) with $f(s, u) = 1$.

- by conservation, there exists an edge (u, v) with $f(u, v) = 1$
- continue until reach t, always choosing a new edge

This produces k (not necessarily simple) edge-disjoint paths.

We can return to u so we can have cycles. But we can eliminate cycles if desired