CSE 421

Network Flows

Shayan Oveis Gharan

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$
v(f) \leq \operatorname{cap}(A, B)
$$

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$
v(f) \leq \operatorname{cap}(A, B)
$$

Pf.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { into } A} f(e) \\
& \leq \sum_{\text {eout of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e)=\operatorname{cap}(A, B)
\end{aligned}
$$

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A, B) such that

$$
v(f)=\operatorname{cap}(A, B)
$$

Then, f is a maximum flow and (A, B) is a minimum cut.

A Greedy Algorithm for Max Flow

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

A Greedy Algorithm for Max Flow

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Residual Graph

Original edge: $e=(u, v) \in E$.

- Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity:

$$
c_{f}(e)=\left\{\begin{array}{l}
c(e)-f(e) \text { if } e \in E \\
f(e) \quad \text { if } e^{R} \in E
\end{array}\right.
$$

Residual graph: $G_{f}=\left(V, E_{f}\right)$.

- Residual edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e: f\left(e^{R}\right)>0\right\}$.

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Ford-Fulkerson Alg: Greedy on G_{f}

Augmenting Path Algorithm


```
Ford-Fulkerson(G, s, t, c) {
    foreach e \in E f(e) \leftarrow0. Gf is residual graph
    while (there exists augmenting path P) {
        f}\leftarrow\mathrm{ Augment(f, c, P)
}
    return f
}
```


Max Flow Min Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.
Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the max s-t flow is equal to the value of the min s-t cut.
Proof strategy. We prove both simultaneously by showing the TFAE:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along that path.

Pf of Max Flow Min Cut Theorem

(iii) => (i)

No augmenting path for $f=>$ there is a cut (A, B) : $v(f)=\operatorname{cap}(A, B)$

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& =\sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Running Time

Assumption. All capacities are integers between 1 and C .
Invariant. Every flow value $f(e)$ and every residual capacities $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most
$v\left(f^{*}\right) \leq n C$ iterations, if f^{*} is optimal flow.
Pf. Each augmentation increase value by at least 1 .
Corollary. If $\mathrm{C}=1$, Ford-Fulkerson runs in $\mathrm{O}(\mathrm{mn})$ time.
Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer. Pf. Since algorithm terminates, theorem follows from invariant.

Applications of Max Flow: Bipartite Matching

Maximum Matching Problem

Given an undirected graph $G=(\mathrm{V}, \mathrm{E})$.
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M .
Goal: find a matching with largest cardinality.

Bipartite Matching Problem

Given an undirected bibpartite graph $G=(X \cup Y, E)$
A set $M \subseteq E$ is a matching if each node appears in at most one edge in M. Goal: find a matching with largest cardinality.

Bipartite Matching using Max Flow

Create digraph H as follows:

- Orient all edges from X to Y, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t , and unit capacity edges from each node in R to t .

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $\mathrm{G}=$ value of max flow in H .
Pf. \leq
Given max matching M of cardinality k .
Consider flow f that sends 1 unit along each of k edges of M. f is a flow, and has cardinality k. -

Bipartite Matching: Proof of Correctness

Thm. Max cardinality matching in $\mathrm{G}=$ value of max flow in H .
Pf. (of \geq) Let f be a max flow in H of value k.
Integrality theorem $\Rightarrow k$ is integral and we can assume f is $0-1$.
Consider $\mathrm{M}=$ set of edges from X to Y with $\mathrm{f}(\mathrm{e})=1$.

- each node in X and Y participates in at most one edge in M
- $|\mathrm{M}|=\mathrm{k}$: consider s -t cut $(s \cup X, t \cup Y)$

