
CSE 421

Bellman-Ford ALG, Network Flows

Shayan Oveis Gharan

1

DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = +
0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,$ %& '()'
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,$)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer.

2

Bellman Ford Algorithm

3

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?

Bellman Ford Algorithm

4

for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles?
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n]

DP Techniques Summary

Recipe:
• Follow the natural induction proof.
• Find out additional assumptions/variables/subproblems that you

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an

ordering is important:
• Adding a new variable: knapsack.
• Dynamic programming over intervals: RNA secondary structure.
Top-down vs. bottom-up:
• Different people have different intuitions
• Bottom-up is useful to optimize the memory

5

Network Flows

Soviet Rail Network

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Network Flow Applications

Max flow and min cut.
• Two very rich algorithmic problems.
• Cornerstone problems in combinatorial optimization.
• Beautiful mathematical duality.

Nontrivial applications / reductions.
• Data mining.
• Open-pit mining.
• Project selection.
• Airline scheduling.
• Bipartite matching.
• Baseball elimination.
• Image segmentation.
• Network connectivity.

8

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a cut separating 𝑠, 𝑡 that cuts the minimum capacity of
edges.

9

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

s-t cuts

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑. /01 /2 3 𝑐(𝑒)

10

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 10 + 5 + 15 = 30

A

s-t cuts

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑ !,$:!∈3,$∈5 𝑐(𝑢, 𝑣)

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 9 + 15 + 8 + 30
= 62

A

Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two
distinguished nodes: s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a s-t cut of minimum capacity

12

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 10 + 8 + 10 = 28

s-t Flows

Def. An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %(& 𝑓(𝑒) (conservation)

Def. The value of a flow f is: 𝑣 𝑓 = ∑. /01 /2 6 𝑓(𝑒)

13

4

0

0

0 4

0
0

Value = 4
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

0

0
0

0

4

0

0

s-t Flows

Def. An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %(& 𝑓(𝑒) (conservation)

Def. The value of a flow f is: 𝑣 𝑓 = ∑. /01 /2 6 𝑓(𝑒)

14

10

6

6

3 8

0
0

Value = 24
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.

15

10

9

9

4 8

1
0

Value = 28
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

0

14

4
0

10

9

0

14

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓 𝑒 = 𝑣(𝑓)

16

10

6

6

3 8

0
0

Value = 24
capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓 𝑒 = 𝑣(𝑓)

Pf.

17

𝑣 𝑓 = 8
! %'$ %(*

𝑓(𝑒)

= 8
&∈)

8
! %'$ %(&

𝑓 𝑒 − 8
! "# $% &

𝑓(𝑒)

= 8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓(𝑒)

By conservation of flow,
all terms except v=s are0

All contributions due to
internal edges cancel out

Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

18

10

6

6

3 8

0
0

v(f)=24, capacity=9+15+8+30=62

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

4

11

1
0

10

8

0

11

Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
Pf.

19

𝑣 𝑓 = 8
! ,-. ,/)

𝑓 𝑒 − 8
! 01 .,)

𝑓(𝑒)

≤ 8
! ,-. ,/)

𝑓(𝑒)

≤ 8
! ,-. ,/)

𝑐 𝑒 = 𝑐𝑎𝑝(𝐴, 𝐵)

s

t

A B

7
6

8
4

6
5

Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that
𝑣 𝑓 = 𝑐𝑎𝑝 𝐴, 𝐵

Then, f is a maximum flow and (A,B) is a minimum cut.

20

10

9

9

4 8

1
0

v(f)=28, cap(A,B)=28

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

0

14

4
0

10

9

0

14

A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.

21

s

1

2

t

10

10

0 0

0 0

0

20

20

30

20

20

20

A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.

22Greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

OPT = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

Local Optimum ≠ Global Optimum

Residual Graph

Original edge: e = (u, v) Î E.
• Flow f(e), capacity c(e).

Residual edge.
• "Undo" flow sent.
• e = (u, v) and eR = (v, u).
• Residual capacity:

𝑐/ 𝑒 = >
𝑐 𝑒 − 𝑓 𝑒 𝑖𝑓 𝑒 ∈ 𝐸
𝑓 𝑒 𝑖𝑓 𝑒2 ∈ 𝐸

Residual graph: Gf = (V, Ef).
• Residual edges with positive residual capacity.
• 𝐸/ = 𝑒 ∶ 𝑓 𝑒 < 𝑐 𝑒 ∪ {𝑒 ∶ 𝑓(𝑒2) > 0}.

23

u v17

6

capacity

u v11

residual
capacity

6
residual
capacity

flow

Ford-Fulkerson Alg: Greedy on Gf

24

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
0

0

0 0

0
0

0
0

0

s

2

3

4

5 t10 9

8

10

62
Gf:

10

4

10

Find Path

Ford-Fulkerson Alg: Greedy on Gf

25

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
4

4

0 0

0
0

0
4

0

s

2

3

4

5 t10 9

8

10

62
Gf:

10

4

10

Update Flow

Ford-Fulkerson Alg: Greedy on Gf

26

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
4

4

0 0

0
0

0
4

0

s

2

3

4

5 t10 9

8

10

62
Gf:

6 6

Update Residual

4

4

4

Ford-Fulkerson Alg: Greedy on Gf

27

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
4

4

0 0

0
0

0
4

0

s

2

3

4

5 t10

8 6
Gf:

6

Find Path

4

4

4

9 10

6 2

Ford-Fulkerson Alg: Greedy on Gf

28

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
6

4

0 2

2
0

0
4

2

s

2

3

4

5 t10

8 6
Gf:

6
4

4

4

9 10

6 2

Update Flow

Ford-Fulkerson Alg: Greedy on Gf

29

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
6

4

0 2

2
0

0
4

2

s

2

3

4

5 t10

8 6
Gf:

6
6

4

4

7 8

4 2

Update Residual

2 2

Ford-Fulkerson Alg: Greedy on Gf

30

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
6

4

0 2

2
0

0
4

2

s

2

3

4

5 t10

6
Gf:

6
6

4

4

7

2

2 2

8

8

4

Find Path

Ford-Fulkerson Alg: Greedy on Gf

31

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

0 2

2
4

0
4

6

s

2

3

4

5 t10

6
Gf:

6
6

4

4

7

2

2 2

8

8

4

Update Flow

Ford-Fulkerson Alg: Greedy on Gf

32

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

0 2

2
4

0
4

6

s

2

3

4

5 t10

6
Gf:

6
10

4

4

7

2

2 6

4

4

Update Residual

4

Ford-Fulkerson Alg: Greedy on Gf

33

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

0 2

2
4

0
4

6

s

2

3

4

5 t

Gf: 10

4

4

7
2 6

4

Find Path

4

6642

10

Ford-Fulkerson Alg: Greedy on Gf

34

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

2 2

0
6

2
6

6

s

2

3

4

5 t

Gf: 10

4

4

7
2 6

4

Update Flow

4

6642

10

Ford-Fulkerson Alg: Greedy on Gf

35

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

2 2

0
6

2
6

6

s

2

3

4

5 t

Gf: 10

4

6

7
2 6

4

Update Residual

6

422

8

2
4

2

Ford-Fulkerson Alg: Greedy on Gf

36

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

2 2

0
6

2
6

6

s

2

3

4

5 t

Gf: 10

4

6

2 6

Find Path

6

422 2
4

2

8 7 4

Ford-Fulkerson Alg: Greedy on Gf

37

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

6 6

0
6

2
6

10

s

2

3

4

5 t

Gf: 10

4

6

2 6

Update Flow

6

422 2
4

2

8 7 4

Ford-Fulkerson Alg: Greedy on Gf

38

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

6 6

0
6

2
6

10

s

2

3

4

5 t

Gf: 10

4

6

6 10

Update Residual

6

422 2
4

6

4 3

Ford-Fulkerson Alg: Greedy on Gf

39

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

6 6

0
6

2
6

10

s

2

3

4

5 t

Gf: 10

4

6

6 10

Find Path

6

22
2

6

4
4

34

Ford-Fulkerson Alg: Greedy on Gf

40

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

9 9

0
6

5
9

10

s

2

3

4

5 t

Gf: 10

4

6

6 10

Update FLow

6

22
2

6

4
4

34

Ford-Fulkerson Alg: Greedy on Gf

41

s

2

3

4

5 t10

10

9

8

4

10

1062
G:

capacity
10

4

9 9

0
6

5
9

10

s

2

3

4

5 t

Gf: 10

4

9

9 10

Find Path

6

22
5

9

1
1

1

Augmenting Path Algorithm

42

Augment(f, c, P) {
b ¬ bottleneck(P)
foreach e Î P {

if (e Î E) f(e) ¬ f(e) + b
c(e) ¬ c(e) – b
c(eR) ¬ c(eR) + b

else f(e) ¬ f(e) – b
c(e) ¬ c(e) + b
c(eR) ¬ c(eR) - b

}
return f

}

Ford-Fulkerson(G, s, t, c) {
foreach e Î E f(e) ¬ 0. Gf is residual graph
while (there exists augmenting path P) {

f ¬ Augment(f, c, P)
}

return f
}

Smallest capacity edge on P

Forward edge

Reverse edgeeR Î P

Max Flow Min Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.
Max-flow min-cut theorem. [Ford-Fulkerson 1956] The value of the
max s-t flow is equal to the value of the min s-t cut.
Proof strategy. We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) Þ (ii) This was the corollary to weak duality lemma.

(ii) Þ (iii) We show contrapositive.
Let f be a flow. If there exists an augmenting path, then we can
improve f by sending flow along that path.

43

Pf of Max Flow Min Cut Theorem

(iii) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

• Let f be a flow with no augmenting paths.
• Let A be set of vertices reachable from s in residual graph.
• By definition of A, s Î A.
• By definition of f, t Ï A.

44

𝑣 𝑓 = 8
! %'$ %()

𝑓 𝑒 − 8
! "# $%)

𝑓(𝑒)

= 8
! %'$ %()

𝑐 𝑒

= 𝑐𝑎𝑝(𝐴, 𝐵)

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value 𝑓(𝑒) and every residual capacities
𝑐𝑓 (𝑒) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most
𝑣(𝑓∗) £ 𝑛𝐶 iterations, if 𝑓∗ is optimal flow.
Pf. Each augmentation increase value by at least 1.

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.

45

