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DP for Shortest Path

Def: Let 𝑂𝑃𝑇(𝑣, 𝑖) be the length of the shortest 𝑠 - 𝑣 path with at 
most 𝑖 edges.

𝑂𝑃𝑇 𝑣, 𝑖 = +
0 if 𝑣 = 𝑠
∞ if 𝑣 ≠ 𝑠, 𝑖 = 0
min(𝑂𝑃𝑇 𝑣, 𝑖 − 1 , min

!: !,$ %& '()'
𝑂𝑃𝑇 𝑢, 𝑖 − 1 + 𝑐!,$)

So, for every v, 𝑂𝑃𝑇 𝑣, ? is the shortest path from s to v.
But how long do we have to run?
Since G has no negative cycle, it has at most 𝑛 − 1 edges. So,
𝑂𝑃𝑇(𝑣, 𝑛 − 1) is the answer. 
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Bellman Ford Algorithm
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for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 



Bellman Ford Algorithm
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for v=1 to n
if 𝒗 ≠ 𝒔 then

M[v,0]=∞
M[s,0]=0.

for i=1 to n-1
for v=1 to n

M[v,i]=M[v,i-1]
for every edge (u,v)

M[v,i]=min(M[v,i], M[u,i-1]+cu,v)

Running Time: 𝑂 𝑛𝑚
Can we test if G has negative cycles? 
Yes, run for i=1…2n and see if the M[v,n-1] is different from M[v,2n] 



DP Techniques Summary

Recipe: 
• Follow the natural induction proof. 
• Find out additional assumptions/variables/subproblems that you 

need to do the induction
• Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.
• Whenever a problem is a special case of an NP-hard problem an 

ordering is important: 
• Adding a new variable:  knapsack.
• Dynamic programming over intervals:  RNA secondary structure.
Top-down vs. bottom-up:  
• Different people have different intuitions 
• Bottom-up is useful to optimize the memory
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Network Flows



Soviet Rail Network

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Network Flow Applications

Max flow and min cut.
• Two very rich algorithmic problems.
• Cornerstone problems in combinatorial optimization.
• Beautiful mathematical duality.

Nontrivial applications / reductions.
• Data mining.
• Open-pit mining. 
• Project selection.
• Airline scheduling.
• Bipartite matching.
• Baseball elimination.
• Image segmentation.
• Network connectivity.
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Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two 
distinguished nodes:  s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a cut separating 𝑠, 𝑡 that cuts the minimum capacity of 
edges.

9

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink



s-t cuts

Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑. /01 /2 3 𝑐(𝑒)
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s-t cuts

Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B): 𝑐𝑎𝑝 𝐴, 𝐵 = ∑ !,$ :!∈3,$∈5 𝑐(𝑢, 𝑣)
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Minimum s-t Cut Problem

Given a directed graph G = (V, E) = directed graph and two 
distinguished nodes:  s = source, t = sink.
Suppose each directed edge e has a nonnegative capacity 𝑐(𝑒)
Goal: Find a s-t cut of minimum capacity
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s-t Flows

Def.  An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %( & 𝑓(𝑒) (conservation)

Def.  The value of a flow f is: 𝑣 𝑓 = ∑. /01 /2 6 𝑓(𝑒)
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s-t Flows

Def.  An s-t flow is a function that satisfies:
• For each 𝑒 ∈ 𝐸: 0 ≤ 𝑓 𝑒 ≤ 𝑐(𝑒) (capacity)
• For each 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: ∑! "# $% & 𝑓(𝑒) = ∑! %'$ %( & 𝑓(𝑒) (conservation)

Def.  The value of a flow f is: 𝑣 𝑓 = ∑. /01 /2 6 𝑓(𝑒)
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Maximum s-t Flow Problem

Goal: Find a s-t flow of largest value.
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓 𝑒 = 𝑣(𝑓)
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Pf of Flow value Lemma

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓 𝑒 = 𝑣(𝑓)

Pf. 
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𝑣 𝑓 = 8
! %'$ %( *

𝑓(𝑒)

= 8
&∈)

8
! %'$ %( &

𝑓 𝑒 − 8
! "# $% &

𝑓(𝑒)

= 8
! %'$ %( )

𝑓 𝑒 − 8
! "# $% )

𝑓(𝑒)

By conservation of flow,
all terms except v=s are0

All contributions due to 
internal edges cancel out



Weak Duality of Flows and Cuts

Cut Capacity lemma. Let f be any flow, and let (A, B) be any s-t 
cut.  Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
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Weak Duality of Flows and Cuts

Cut capacity lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then the value of the flow is at most the capacity of the cut.

𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)
Pf. 

19

𝑣 𝑓 = 8
! ,-. ,/ )

𝑓 𝑒 − 8
! 01 ., )

𝑓(𝑒)

≤ 8
! ,-. ,/ )

𝑓(𝑒)

≤ 8
! ,-. ,/ )

𝑐 𝑒 = 𝑐𝑎𝑝(𝐴, 𝐵)

s

t

A B

7
6

8
4

6
5



Certificate of Optimality

Corollary: Suppose there is a s-t cut (A,B) such that 
𝑣 𝑓 = 𝑐𝑎𝑝 𝐴, 𝐵

Then, f is a maximum flow and (A,B) is a minimum cut.
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A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.
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A Greedy Algorithm for Max Flow

• Start with f(e) = 0 for all edge e Î E.
• Find an s-t path P where each edge has f(e) < c(e).
• Augment flow along path P.
• Repeat until you get stuck.
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Residual Graph

Original edge:  e = (u, v)  Î E.
• Flow f(e), capacity c(e).

Residual edge.
• "Undo" flow sent.
• e = (u, v) and eR = (v, u).
• Residual capacity:

𝑐/ 𝑒 = >
𝑐 𝑒 − 𝑓 𝑒 𝑖𝑓 𝑒 ∈ 𝐸
𝑓 𝑒 𝑖𝑓 𝑒2 ∈ 𝐸

Residual graph:  Gf = (V, Ef ).
• Residual edges with positive residual capacity.
• 𝐸/ = 𝑒 ∶ 𝑓 𝑒 < 𝑐 𝑒 ∪ {𝑒 ∶ 𝑓(𝑒2) > 0}.
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Ford-Fulkerson Alg: Greedy on Gf
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Augmenting Path Algorithm

42

Augment(f, c, P) {
b ¬ bottleneck(P) 
foreach e Î P {

if (e Î E) f(e) ¬ f(e) + b
c(e) ¬ c(e) – b
c(eR) ¬ c(eR) + b

else f(e) ¬ f(e) – b
c(e) ¬ c(e) + b
c(eR) ¬ c(eR) - b

}
return f

}

Ford-Fulkerson(G, s, t, c) {
foreach e Î E  f(e) ¬ 0. Gf is residual graph
while (there exists augmenting path P) {

f ¬ Augment(f, c, P)
}

return f
}

Smallest capacity edge on P

Forward edge

Reverse edgeeR Î P



Max Flow Min Cut Theorem

Augmenting path theorem.  Flow f is a max flow iff there are no 
augmenting paths. 
Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The value of the 
max s-t flow is equal to the value of the min s-t cut.
Proof strategy.  We prove both simultaneously by showing the TFAE:

(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i)  Þ (ii)  This was the corollary to weak duality lemma.

(ii)  Þ (iii)  We show contrapositive.
Let f be a flow. If there exists an augmenting path, then we can 
improve f by sending flow along that path.
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Pf of Max Flow Min Cut Theorem

(iii) => (i)
No augmenting path for f => there is a cut (A,B): v(f)=cap(A,B)

• Let f be a flow with no augmenting paths.
• Let A be set of vertices reachable from s in residual graph.
• By definition of A, s Î A.
• By definition of f, t Ï A.
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𝑓 𝑒 − 8
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value 𝑓(𝑒) and every residual capacities 
𝑐𝑓 (𝑒) remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most 
𝑣(𝑓∗) £ 𝑛𝐶 iterations, if 𝑓∗ is optimal flow.
Pf.  Each augmentation increase value by at least 1.   

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant.  
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