CSE 421

Dynamic Programming

Shayan Oveis Gharan



Longest Path in a DAG



Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general

directed graphs:
- It has the Hamiltonian Path as a

special case




DP for Longest Path in a DAG

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in
defining the ordering

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.




DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at
Suppose in the longest path ending at j, last edge is (i, j).

Then, none ofthe i + 1, ...,j — 1 are in this path since
topological ordering. Furthermore the path ending at i must

be the longest path ending at |,
OPT(j) = OPT(i) + 1.



DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (i,j) is a
directed edge only if i <.

Let OPT(j) = length of the longest path ending at

| 0 If j is a source
OPT(j) =11+ max OPT(i) 0.W.

i:(i,j) an edge



DP for Longest Path in a DAG

Let G be a DAG given with a topological sorting: For all edges
(i,j) we have i<j.

Compute-OPT (j) {

if (in-degree(j)==0)

return 0O
if (M[j]==empty)

M[]j]=0;

for all edges (i,3])

M[j] = max(M[j], 1+Compute-OPT (i) )

return M[]]

}
Output max (M[1],..,M[n])

Running Time: O(n + m)
Memory: 0(n)
Can we output the longest path?



Outputting the Longest Path

Let G be a DAG given with a topological sorting: For all edges
(i,j) we have i<j.
Initialize Parent[]j]=-1 for all j.
Compute-OPT (j) {
if (in-degree(j)==0)
return 0O
if (M[j]==empty)

M[3j]=0; Record the entry that

for all edges (1i,3) .
if (M[§] < 1+Compute-oPT(1)) V€ used to compute OPT(j)
M[j]=1+Compute- (1)

Parent[j]=1
return M[]]

}
Let M[k] be the maximum of M[1l],..,M[n]
While (Parentl[k]!=-1)

Print k

k=Parent[k]



Longest Increasing Subsequence



Longest Increasing Subsequence

Given a sequence of numbers
Find the longest increasing subsequence

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

!

41, 22, 9, 15, 23, 39, 21, 56, 24, 34, 59, 23, 60, 39, 87, 23, 90

10



DP for LIS

Let OPT(j) be the longest increasing subsequence ending at j.

Observation: Suppose the OPT(j) is the sequence
xil,xiz, ...,Xl'k,Xj

Then, x; ,x; , ..., x;, Is the longest increasing subsequence
ending at x; ,i.e., OPT(j) =1+ OPT (iy)

If x; < x;foralli <
O.W.

1
OPT(j)) =4 14 max OPT(i)

i:xi<xj

Remark: This is a special case of Longest path in a DAG: Construct a

graph 1,...n where (i, /) is an edge if i <j and x; < x;. 1



Shortest Paths with Negative Edge
Weights



Shortest Paths with Neg Edge Weights

Given a weighted directed graph ¢ = (V, E) and a source vertex
s, where the weight of edge (u,v) is ¢, ,,

Goal: Find the shortest path from s to all vertices of G.

e o

13



Impossibility on Graphs with Neg Cycles

Observation: No solution exists if G has a negative cycle.

This is because we can minimize the length by going over the
cycle again and again.

So, suppose G does not have a negative cycle.

14



DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

Let us characterize OPT (v, i).

Case 1: OPT (v,i) path has less than i edges.
« Then, OPT(v,i) = OPT(v,i — 1).

Case 2: OPT (v, i) path has exactly i edges.
 Lets,vq,v,,...,v;_1,v be the OPT (v, i) path with i edges.

 Then, s,vq,...,v;_1 must be the shortest s - v;_; path with at

most i — 1 edges. So,
OPT(U, i) = OPT(Ui_l;i — 1) + Coi_iv

15



DP for Shortest Path

Def: Let OPT (v, i) be the length of the shortest s - v path with at
most i edges.

(0 ifv=s

OPT(v,i) =4 @ ifv#s,i=0
min(OPT (v,i — 1), min OPT(u,i—1) + cy)
L u:(u,v) an edge '

So, for every v, OPT(v,?) is the shortest path from s to v.

But how long do we have to run?

Since G has no negative cycle, it has at most n — 1 edges. So,
OPT(v,n — 1) is the answer.

16



Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c, )

Running Time: 0(nm)
Can we test if G has negative cycles?

17



Bellman Ford Algorithm

for v=1 to n
if v#s then
M[v,0]=00
M[s,0]=0.

for i=1 to n-1
for v=1 to n
M[v,i]=M[v,i-1]
for every edge (u,v)
M[v,i]=min (M[v,i], M[u,i-1]+c, )

Running Time: 0(nm)
Can we test if G has negative cycles?
Yes, run for i=1...2n and see if the M[v,n-1] is different from M[v,2n]

18



DP Techniques Summary

Recipe:
* Follow the natural induction proof.

« Find out additional assumptions/variables/subproblems that you
need to do the induction

« Strengthen the hypothesis and define w.r.t. new subproblems
Dynamic programming techniques.

 Whenever a problem is a special case of an NP-hard problem an
ordering is important:

« Adding a new variable: knapsack.
« Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up:
« Different people have different intuitions
« Bottom-up is useful to optimize the memory

19



