
CSE 421:  Introduction 
to Algorithms

Stable Matching

Shayan Oveis Gharan

1



Propose-And-Reject Algorithm [Gale-Shapley’62]

2

Initialize each side to be free.
while (some company is free and hasn't proposed to every 
applicant) {

Choose such a c
a = 1st applicant on c's list to whom c has not yet 

proposed
if (a is free)

assign c and a
else if (a prefers c to her current c’)

assign c and a, and c' to be free
else

a rejects c
}



First step: Properties of Algorithm

Observation 1: Companies propose to Applicants in decreasing 
order of preference.

Observation 2: Each company proposes to each applicant at 
most once

Observation 3: Once an applicant is matched, she never 
becomes unmatched; she only "trades up."

3



1) Termination
Claim. Algorithm terminates after ≤ 𝒏𝟐 iterations of while loop.
Proof. Observation 2: Each company proposes to each 
applicant at most once. 
Each company makes at most n proposals
So, there are only 𝑛2 possible proposals.  ▪

4

Walmart

Vmware

1st

A

B

2nd

C

D

3rd

C

B

AZoom

Yamaha

Xfinity C

D

A

B

B

A

D

C

4th

E

E

5th

A

D

E

E

D

C

B

E

Brenda

Amy

1st

W

X

2nd

Y

Z

3rd

Y

X

VErika

Diane

Claire Y

Z

V

W

W

V

Z

X

4th

V

W

5th

V

Z

X

Y

Y

X

W

Z

n(n-1) + 1 proposals required



2) Correctness: Output is Perfect matching

Claim. All Companies and Applicants get matched.

Proof. (by contradiction)
Suppose, for sake of contradiction, that 𝑐 is not matched 

upon termination of algorithm.
Then some applicant, say 𝑎, is not matched upon 

termination.
By Observation 3 (only trading up, never becoming 

unmatched), 𝑎 was never proposed to.
But, 𝑐 proposes to everyone, since it ends up 

unmatched.  

5



2) Correctness:  Stability

Claim. No unstable pairs.
Proof. (by contradiction)

Suppose 𝑐, 𝑎 is an unstable pair: each prefers each other to the 
partner in Gale-Shapley matching S*.

Case 1: 𝑐 never proposed to 𝑎.
Þ 𝑐 prefers its S* partner to 𝑎. 
Þ 𝑐, 𝑎 is stable.

Case 2: 𝑐 proposed to 𝑎.
Þ 𝑎 rejected 𝑐 (right away or later)
Þ 𝑎 prefers her S* partner to 𝑐.
Þ 𝑐, 𝑎 is stable.

In either case 𝑐, 𝑎 is stable, a contradiction.  

6

Obs1: companies propose in 

decreasing order of preference

Obs3: applicants only trade up



Summary

Stable matching problem: Given n companies and n
applicants, and their preferences, find a stable matching if 
one exists.

• Gale-Shapley algorithm: Guarantees to find a stable 
matching for any problem instance.

• Q: If there are multiple stable matchings, which one does 
GS find?

• Q: How to implement GS algorithm efficiently?

• Q: How many stable matchings are there?

8



Understanding the Solution

Q. For a given problem instance, there may be several 
stable matchings. Do all executions of Gale-Shapley yield 
the same stable matching? If so, which one?

An instance with two stable matchings:
• (𝑐!, 𝑎!), (𝑐", 𝑎").
• (𝑐!, 𝑎"), (𝑐", 𝑎!).

9

𝑐#

𝑐$
𝑎#

𝑎$

1st

𝑎$

𝑎#

2nd

𝑐$𝑎#

𝑎$ 𝑐#

1st

𝑐#

𝑐$

2nd



Company Optimal Assignments

Definition: Company 𝑐 is a valid partner of applicant 𝑎 if 
there exists some stable matching in which they are 
matched.

Company-optimal matching: Each company receives the 
best valid partner (according to his preferences).
• Not that each company receives its most favorite applicant.

10



Example

Here 
Valid-partner(𝑐!) = 𝑎!, 𝑎"
Valid-partner(𝑐") = 𝑎!, 𝑎"
Valid-partner(𝑐#) = 𝑎# .

Company-optimal matching 𝑐!, 𝑎! , 𝑐", 𝑎" , {𝑐#, 𝑎#}

11

favorite least favorite favorite least favorite

𝑐# 𝑎! 𝑎"𝑎#
𝑐" 𝑎# 𝑎"𝑎!
𝑐! 𝑎! 𝑎"𝑎#

1st 2nd 3rd

𝑎# 𝑐! 𝑐"𝑐#
𝑎" 𝑐! 𝑐"𝑐#
𝑎! 𝑐# 𝑐"𝑐!

1st 2nd 3rd



Company Optimal Assignments

Definition: Company 𝑐 is a valid partner of applicant 𝑎 if 
there exists some stable matching in which they are 
matched.

Company-optimal matching: Each company receives the 
best valid partner (according to its preferences).
• Not that each company receives its most favorite applicant.

Claim: All executions of GS yield a company-optimal
matching, which is a stable matching!
• So, output of GS is unique!!
• No reason a priori to believe that company-optimal matching is 

perfect, let alone stable.

12



Company Optimality
Claim: GS matching S* is company-optimal.
Proof: (by contradiction)

Suppose some company is paired with someone other than its best 
partner.  Companies propose in decreasing order of preference 
Þ some company is rejected by a valid partner.

Let 𝑐 be the first such rejection, and let 𝑎 be its best valid partner.
Let S be a stable matching where 𝑐 and 𝑎 are matched.
In building S*, when 𝑐 is rejected, 𝑎 is assigned to a company, say 
𝑐′ whom she prefers to 𝑐.

Let 𝑎′ be 𝑐′ partner in S.
In building S*, 𝑐′ is not rejected by any valid partner at the point 

when 𝑐 is rejected by 𝑎. Thus, 𝑐′ prefers 𝑎 to 𝑎′.
But 𝑎 prefers 𝑐′ to 𝑐.
Thus (𝑐%, 𝑎) is unstable in S.  

13

(𝑐!, 𝑎!)

(𝑐, 𝑎)

S

. . .

since this is the first rejection
by a valid partner



Company Optimality Summary

Company-optimality: In version of GS where companies 
propose, each company receives the best valid partner.

Q: Does company-optimality come at the expense of the 
applicants?

14

𝑎 is a valid partner of 𝑐 if there exist some
stable matching where 𝑐 and 𝑎 are paired



Applicant Pessimality

Applicant-pessimal assignment: Each applicant receives 
the worst valid partner.

Claim. GS finds applicant-pessimal stable matching S*.

Proof.
Suppose 𝑐, 𝑎 matched in S*, but 𝑐 is not the worst valid partner for 𝑎.   
There exists stable matching S in which 𝑎 is paired with a company, 
say 𝑐′, whom she likes less than 𝑐.

Let 𝑎′ be 𝑐 partner in S.
𝑐 prefers 𝑎 to 𝑎′.
Thus, (𝑐, 𝑎) is an unstable in S. 

15

company-optimality of S*



Summary

• Stable matching problem: Given n men and n women, 
and their preferences, find a stable matching if one 
exists.

• Gale-Shapley algorithm guarantees to find a stable 
matching for any problem instance.

• GS algorithm finds man-optimal woman pessimal 
matching

• GS algorithm finds a stable matching in O(n2) time.

• Q: How many stable matching are there?

16



Efficient Implementation

We describe 𝑂(𝑛#) time implementation. This is linear in input size.

Representing company and applicant:
Assume companies are named 1, …, n.
Assume applicants are named n+1, …, 2n.

Data Structure: 
Maintain a list of free company, e.g., in a queue.
Maintain two arrays applicant[c], and company[a].

• set entry to 0 if unmatched
• if c matched to a then applicant[c]=a and company[a]=c

Companies proposing:
For each company, maintain a list of applicants, ordered by preference.
Maintain an array count[c] that counts the number of proposals made by 

company c.

18



Efficient Implementation

Applicants rejecting/accepting.
Does applicant a prefer c to c'?
For each applicant, create inverse of preference list of companies.
Constant time access for each query after O(n) preprocessing per 

appliacant.  O(n2) total reprocessing cost.

19

for i = 1 to n 
for j = 1 to n

inverse[i][pref[i][j]] = j

Pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th

Inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8

𝑎&

𝑎&

𝑎" prefers company 3 to 6
since inverse[i][3]=2 < 7=inverse[i][6]



Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.
• Create useful and efficient algorithms.

• Potentially deep social ramifications.  [legal disclaimer]
• Always try to propose first!

20



How many stable Matchings?

We already show every instance has at least 1 stable 
matchings.

There are instances with about 2.24$ stable matchings for

[Karlin-O-Weber’17]: Every instance has at most 131072$
stable matchings
[Palmer-Palvolgyi’20]: Every instance has at most 4.47$
stable matchings

[Research-Question]: 
Is there an “efficient” algorithm that chooses a uniformly 
random stable matching of a given instance.

21



Extensions: Matching Residents to Hospitals

Comapnies » hospitals, Applicants » med school residents.

• Variant 1: Some participants declare others as unacceptable.

• Variant 2: Unequal number of companies and applicants.

• Variant 3: A hospital wants to hire multiple residents

An analogous version of GS algorithm works!

22

e.g. A resident not
interested in Cleveland


