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RNA Secondary Structure



RNA Secondary Structure (Formal)

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]
• S is a matching and 
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4 
intervening bases.  If (bi, bj) Î S, then i < j - 4.
[Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we cannot 
have i < k < j < l.

Free energy:  Usual hypothesis is that an RNA molecule will maximize 
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure 
S that maximizes the number of base pairs.
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approximate by number of base pairs



Secondary Structure (Examples)
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DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a 
secondary structure of the substring  b1b2…bn.

Suppose 𝑏! is matched with 𝑏" in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏#, … , 𝑏"$#, i.e., OPT(t-1)
• Finding secondary structure in 𝑏"%#, … , 𝑏!$#,   ???
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DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary 
structure of the substring 𝑏&, 𝑏&%#, … , 𝑏'

Case 1: If  𝑗 − 𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base 𝑏' is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3: Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

":)! *+,-. /,01 )"
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }
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The most important part of a correct DP; It fixes IH 



Recursive Code
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Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
if (j-i <= 4)

return 0;
if (M[i,j] is empty)

M[i,j]=Compute-OPT(i,j-1)
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +          

Compute-OPT(t+1,j-1))
return M[j]

}

Does this code terminate?
What are we inducting on? 



Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure 
of the substring 𝑏&, 𝑏&%#, … , 𝑏'
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such 
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏' is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

":)! *+,-. /,01 )"
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }
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Bottom-up DP
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for k = 1, 2, …, n-1
for i = 1, 2, …, n-1

j = i + k
if (j-i <= 4)

M[i,j]=0;
else

M[i,j]=M[i,j-1]
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

return M[1, n]
}

Running Time: 𝑂(𝑛!)
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Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller 
subproblems. 

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are 
dealing with more complex problems, e.g., intervals
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Sequence Alignment



Word Alignment

How similar are two strings?
ocurrance
occurrence
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Edit Distance

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]
Cost = # of gaps + #mismatches.

Applications.
• Basis for Unix diff and Word correct in editors.
• Speech recognition.
• Computational biology.

13

Cost: 3

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-



Sequence Alignment

Given two strings 𝑥", … , 𝑥# and 𝑦", … , 𝑦$ find an alignment 
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥#! , 𝑦$!), 𝑥#" , 𝑦$" , … such 
that 𝑖% < 𝑖& < ⋯ and 𝑗% < 𝑗& < ⋯

Example: CTACCG vs. TACATG.
Sol:  We aligned 
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3. 
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DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥%, … , 𝑥# and 𝑦%, … , 𝑦$

Case 1: OPT matches 𝑥# , 𝑦$
• Then, pay mis-match cost if 𝑥# ≠ 𝑦$ + min cost of aligning 
𝑥%, … , 𝑥#'% and 𝑦%, … , 𝑦$'% i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥# unmatched
• Then, pay gap cost for 𝑥# + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦$ unmatched
• Then, pay gap cost for 𝑦$ + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)
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Bottom-up DP

16

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

M[0, i] = i
for j = 0 to n

M[j, 0] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, j],
1 + M[i, j-1])

return M[m, n]
}

Analysis: Θ(𝑚𝑛) time and space.
English words or sentences:  m, n  £ 10,..,20.
Computational biology:  m = n = 100,000. 10 billions ops OK, 

but 40GB array?



Optimizing Memory

If we are not using strong induction in the DP, we just need to 
use the last (row) of computed values.
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

M[0, i] = i
for j = 0 to n

M[j, 0] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min( (xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, j],
1 + M[i, j-1])

return M[m, n]
} Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]



DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row
• Fill out the new values in a New array
• Copy new to old at the end of the loop
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Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

O[i] = i
for i = 1 to m

N[0]=i
for j = 1 to n

N[j] = min( (xi=yj ? 0:1) + O[j-1],
1 + O[j],
1 + N[j-1])

for j = 1 to n
O[j]=N[j]

return N[n]
}

M[i-1, j]
M[i, j-1]

M[i-1, j-1]



Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.
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Longest Path in a DAG



Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general
directed graphs:
- It has the Hamiltonian Path as a 

special case
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DP for Longest Path in a DAG

Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in 
defining the ordering

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.
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DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a 
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗
Suppose in the longest path ending at 𝑗, last edge is (𝑖, 𝑗). 
Then, none of the 𝑖 + 1,… , 𝑗 − 1 are in this path since 
topological ordering. Furthermore the path ending at i must 
be the longest path ending at i, 

𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑖 + 1.
23
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DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a 
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

𝑂𝑃𝑇 𝑗 = 5
0
1 + max

%: %,( )* +,-+
𝑂𝑃𝑇(𝑖)
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If 𝑗 is a source
o.w.



DP for Longest Path in a DAG
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Let G be a DAG given with a topological sorting: For all edges 
(𝒊, 𝒋) we have i<j.

Compute-OPT(j){
if (in-degree(j)==0)

return 0
if (M[j]==empty)

M[j]=0;
for all edges (i,j)

M[j] = max(M[j],1+Compute-OPT(i))
return M[j]

}
Output max(M[1],…,M[n])

Running Time: 𝑂 𝑛 +𝑚
Memory: 𝑂 𝑛
Can we output the longest path?



Outputting the Longest Path
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Let G be a DAG given with a topological sorting: For all edges 
(𝒊, 𝒋) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j){

if (in-degree(j)==0)
return 0

if (M[j]==empty)
M[j]=0;
for all edges (i,j)

if (M[j] < 1+Compute-OPT(i))
M[j]=1+Compute-OPT(i)
Parent[j]=i

return M[j]
}
Let M[k] be the maximum of M[1],…,M[n]
While (Parent[k]!=-1)

Print k
k=Parent[k]

Record the entry that 
we used to compute OPT(j)


