
CSE 421

Dynamic Programming

Shayan Oveis Gharan

1

RNA Secondary Structure

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:
[Watson-Crick.]
• S is a matching and
• each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4
intervening bases. If (bi, bj) Î S, then i < j - 4.
[Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we cannot
have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will maximize
total free energy.

Goal: Given an RNA molecule B = b1b2…bn, find a secondary structure
S that maximizes the number of base pairs.

3

approximate by number of base pairs

Secondary Structure (Examples)

4

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
£4

base pair

DP: First Attempt

First attempt. Let 𝑂𝑃𝑇(𝑛) = maximum number of base pairs in a
secondary structure of the substring b1b2…bn.

Suppose 𝑏! is matched with 𝑏" in 𝑂𝑃𝑇 𝑛 .
What IH should we use?

Difficulty: This naturally reduces to two subproblems
• Finding secondary structure in 𝑏#, … , 𝑏"$#, i.e., OPT(t-1)
• Finding secondary structure in 𝑏"%#, … , 𝑏!$#, ???

5

1 t n

match bt and bn

DP: Second Attempt

Definition: 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary
structure of the substring 𝑏&, 𝑏&%#, … , 𝑏'

Case 1: If 𝑗 − 𝑖 ≤ 4.
• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base 𝑏' is not involved in a pair.
• OPT(i, j) = OPT(i, j-1)

Case 3: Base bj pairs with bt for some i £ t < j – 4
• non-crossing constraint decouples resulting sub-problems
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

":)! *+,-. /,01)"
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

6

The most important part of a correct DP; It fixes IH

Recursive Code

7

Let M[i,j]=empty for all i,j.

Compute-OPT(i,j){
if (j-i <= 4)

return 0;
if (M[i,j] is empty)

M[i,j]=Compute-OPT(i,j-1)
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +

Compute-OPT(t+1,j-1))
return M[j]

}

Does this code terminate?
What are we inducting on?

Formal Induction

Let 𝑂𝑃𝑇(𝑖, 𝑗) = maximum number of base pairs in a secondary structure
of the substring 𝑏&, 𝑏&%#, … , 𝑏'
Base Case: 𝑂𝑃𝑇(𝑖, 𝑗) = 0 for all 𝑖, 𝑗 where 𝑗 − 𝑖 ≤ 4.
IH: For some ℓ ≥ 4, Suppose we have computed 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗
where 𝑖 − 𝑗 ≤ ℓ.

IS: Goal: We find 𝑂𝑃𝑇(𝑖, 𝑗) for all 𝑖, 𝑗 where 𝑖 − 𝑗 = ℓ + 1. Fix 𝑖, 𝑗 such
that 𝑖 − 𝑗 = ℓ + 1.
Case 1: Base 𝑏' is not involved in a pair.
• OPT(i, j) = OPT(i, j-1) [this we know by IH since 𝑖 − 𝑗 − 1 = ℓ]

Case 2: Base bj pairs with bt for some i £ t < j – 4
• 𝑂𝑃𝑇 𝑖, 𝑗 = max

":)! *+,-. /,01)"
{ 1 + 𝑂𝑃𝑇(𝑖, 𝑡 − 1) + 𝑂𝑃𝑇(𝑡 + 1, 𝑗 − 1) }

8We know by IH since difference ≤ ℓ

Bottom-up DP

9

for k = 1, 2, …, n-1
for i = 1, 2, …, n-1

j = i + k
if (j-i <= 4)

M[i,j]=0;
else

M[i,j]=M[i,j-1]
for t=i to j-5 do

if (𝒃𝒕, 𝒃𝒋 is in {A-U, U-A, C-G, G-C})
M[i,j]=max(M[i,j], 1+ M[i,t-1] + M[t+1,j-1])

return M[1, n]
}

Running Time: 𝑂(𝑛!)

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

Lesson

We may not always induct on 𝑖 or 𝑤 to get to smaller
subproblems.

We may have to induct on |𝑖 − 𝑗| or 𝑖 + 𝑗 when we are
dealing with more complex problems, e.g., intervals

10

Sequence Alignment

Word Alignment

How similar are two strings?
ocurrance
occurrence

12

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
Cost = # of gaps + #mismatches.

Applications.
• Basis for Unix diff and Word correct in editors.
• Speech recognition.
• Computational biology.

13

Cost: 3

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

Cost: 5

-

Sequence Alignment

Given two strings 𝑥", … , 𝑥# and 𝑦", … , 𝑦$ find an alignment
with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs (𝑥#! , 𝑦$!), 𝑥#" , 𝑦$" , … such
that 𝑖% < 𝑖& < ⋯ and 𝑗% < 𝑗& < ⋯

Example: CTACCG vs. TACATG.
Sol: We aligned
x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

So, the cost is 3.

14

C T A C C -

T A C A T-

G

G
y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

DP for Sequence Alignment

Let 𝑂𝑃𝑇(𝑖, 𝑗) be min cost of aligning 𝑥%, … , 𝑥# and 𝑦%, … , 𝑦$

Case 1: OPT matches 𝑥# , 𝑦$
• Then, pay mis-match cost if 𝑥# ≠ 𝑦$ + min cost of aligning
𝑥%, … , 𝑥#'% and 𝑦%, … , 𝑦$'% i.e., 𝑂𝑃𝑇(𝑖 − 1, 𝑗 − 1)

Case 2: OPT leaves 𝑥# unmatched
• Then, pay gap cost for 𝑥# + 𝑂𝑃𝑇 𝑖 − 1, 𝑗

Case 3: OPT leaves 𝑦$ unmatched
• Then, pay gap cost for 𝑦$ + 𝑂𝑃𝑇(𝑖, 𝑗 − 1)

15

Bottom-up DP

16

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

M[0, i] = i
for j = 0 to n

M[j, 0] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, j],
1 + M[i, j-1])

return M[m, n]
}

Analysis: Θ(𝑚𝑛) time and space.
English words or sentences: m, n £ 10,..,20.
Computational biology: m = n = 100,000. 10 billions ops OK,

but 40GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to
use the last (row) of computed values.

17

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

M[0, i] = i
for j = 0 to n

M[j, 0] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min((xi=yj ? 0:1) + M[i-1, j-1],
1 + M[i-1, j],
1 + M[i, j-1])

return M[m, n]
} Just need 𝑖 − 1, 𝑖 rows

to compute M[i,j]

DP with 𝑂(𝑚 + 𝑛) memory

• Keep an Old array containing values of the last row
• Fill out the new values in a New array
• Copy new to old at the end of the loop

18

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn) {
for i = 0 to m

O[i] = i
for i = 1 to m

N[0]=i
for j = 1 to n

N[j] = min((xi=yj ? 0:1) + O[j-1],
1 + O[j],
1 + N[j-1])

for j = 1 to n
O[j]=N[j]

return N[n]
}

M[i-1, j]
M[i, j-1]

M[i-1, j-1]

Lesson

Advantage of a bottom-up DP:

It is much easier to optimize the space.

19

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general
directed graphs:
- It has the Hamiltonian Path as a

special case

21

2 3

6 5 4

7 1

DP for Longest Path in a DAG

Q: What is the right ordering?
Remember, we have to use that G is a DAG, ideally in
defining the ordering

We saw that every DAG has a topological sorting
So, let’s use that as an ordering.

22

2 3

6 5 4

7 1

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗
Suppose in the longest path ending at 𝑗, last edge is (𝑖, 𝑗).
Then, none of the 𝑖 + 1,… , 𝑗 − 1 are in this path since
topological ordering. Furthermore the path ending at i must
be the longest path ending at i,

𝑂𝑃𝑇 𝑗 = 𝑂𝑃𝑇 𝑖 + 1.
23

1 2 3 4 5 6 7

DP for Longest Path in a DAG

Suppose we have labelled the vertices such that (𝑖, 𝑗) is a
directed edge only if 𝑖 < 𝑗.

Let 𝑂𝑃𝑇(𝑗) = length of the longest path ending at 𝑗

𝑂𝑃𝑇 𝑗 = 5
0
1 + max

%: %,()* +,-+
𝑂𝑃𝑇(𝑖)

24

If 𝑗 is a source
o.w.

DP for Longest Path in a DAG

25

Let G be a DAG given with a topological sorting: For all edges
(𝒊, 𝒋) we have i<j.

Compute-OPT(j){
if (in-degree(j)==0)

return 0
if (M[j]==empty)

M[j]=0;
for all edges (i,j)

M[j] = max(M[j],1+Compute-OPT(i))
return M[j]

}
Output max(M[1],…,M[n])

Running Time: 𝑂 𝑛 +𝑚
Memory: 𝑂 𝑛
Can we output the longest path?

Outputting the Longest Path

26

Let G be a DAG given with a topological sorting: For all edges
(𝒊, 𝒋) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j){

if (in-degree(j)==0)
return 0

if (M[j]==empty)
M[j]=0;
for all edges (i,j)

if (M[j] < 1+Compute-OPT(i))
M[j]=1+Compute-OPT(i)
Parent[j]=i

return M[j]
}
Let M[k] be the maximum of M[1],…,M[n]
While (Parent[k]!=-1)

Print k
k=Parent[k]

Record the entry that
we used to compute OPT(j)

