

Dynamic Programming

Shayan Oveis Gharan

RNA Secondary Structure

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs $S = \{ (b_i, b_j) \}$ that satisfy: [Watson-Crick.]

- S is a *matching* and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.

[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j - 4. [Non-crossing.] If (b_i, b_i) and (b_k, b_l) are two pairs in S, then we cannot

[Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.

Goal: Given an RNA molecule $B = b_1 b_2 \dots b_n$, find a secondary structure S that maximizes the number of base pairs.

Secondary Structure (Examples)

DP: First Attempt

First attempt. Let OPT(n) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_n$.

Suppose b_n is matched with b_t in OPT(n). What IH should we use? match b_t and b_n

Difficulty: This naturally reduces to two subproblems

- Finding secondary structure in b_1, \dots, b_{t-1} , i.e., OPT(t-1)
- Finding secondary structure in b_{t+1}, \dots, b_{n-1} , ???

DP: Second Attempt

Definition: OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i, b_{i+1}, ..., b_j$ The most important part of a correct DP; It fixes IH

Case 1: If $j - i \leq 4$.

• OPT(i, j) = 0 by no-sharp turns condition.

Case 2: Base b_j is not involved in a pair.

• OPT(i, j) = OPT(i, j-1)

Case 3: Base b_i pairs with b_t for some $i \le t < j - 4$

- non-crossing constraint decouples resulting sub-problems
- $OPT(i,j) = \max_{t:b_i \text{ pairs with } b_t} \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \}$

Recursive Code

Does this code terminate? What are we inducting on?

Formal Induction

Let OPT(i, j) = maximum number of base pairs in a secondary structure of the substring b_i, b_{i+1}, \dots, b_j

Base Case: OPT(i,j) = 0 for all i, j where $|j - i| \le 4$.

IH: For some $\ell \ge 4$, Suppose we have computed OPT(i, j) for all i, j where $|i - j| \le \ell$.

IS: Goal: We find OPT(i, j) for all i, j where $|i - j| = \ell + 1$. Fix i, j such that $|i - j| = \ell + 1$.

Case 1: Base b_j is not involved in a pair.

• OPT(i, j) = OPT(i, j-1) [this we know by IH since $|i - (j - 1)| = \ell$]

Case 2: Base b_j pairs with b_t for some $i \le t < j - 4$

• $OPT(i,j) = \max_{t:b_i \text{ pairs with } b_t} \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \}$

We know by IH since difference $\leq \ell$

Bottom-up DP

```
4
                                                               0
                                                                  0
                                                                     0
for k = 1, 2, ..., n-1
                                                            3
                                                               0
   for i = 1, 2, ..., n-1
                                                                 0
                                                         i
     j = i + k
                                                            2
                                                               0
     if (j-i <= 4)
                                                            1
       M[i,j]=0;
                                                                  7 8
                                                                        9
                                                               6
       else
          M[i,j]=M[i,j-1]
                                                                    j
          for t=i to j-5 do
            if (b_t, b_j \text{ is in } \{A-U, U-A, C-G, G-C\})
              M[i,j] = max(M[i,j], 1 + M[i,t-1] + M[t+1,j-1])
   return M[1, n]
}
```

Running Time: $O(n^3)$

We may not always induct on i or w to get to smaller subproblems.

We may have to induct on |i - j| or i + j when we are dealing with more complex problems, e.g., intervals

Sequence Alignment

Word Alignment

How similar are two strings?

ocurrance

occurrence

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970] Cost = # of gaps + #mismatches.

Applications.

- Basis for Unix diff and Word correct in editors.
- Speech recognition.
- Computational biology.

Sequence Alignment

Given two strings $x_1, ..., x_m$ and $y_1, ..., y_n$ find an alignment with minimum number of mismatch and gaps.

An alignment is a set of ordered pairs $(x_{i_1}, y_{j_1}), (x_{i_2}, y_{j_2}), \dots$ such that $i_1 < i_2 < \cdots$ and $j_1 < j_2 < \cdots$

Example: CTACCG VS. TACATG. Sol: We aligned $x_2-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6$.

So, the cost is 3.

DP for Sequence Alignment

Let OPT(i, j) be min cost of aligning x_1, \dots, x_i and y_1, \dots, y_j

Case 1: OPT matches x_i, y_j

• Then, pay mis-match cost if $x_i \neq y_j$ + min cost of aligning x_1, \dots, x_{i-1} and y_1, \dots, y_{j-1} i.e., OPT(i-1, j-1)

Case 2: OPT leaves *x*_i unmatched

• Then, pay gap cost for $x_i + OPT(i - 1, j)$

Case 3: OPT leaves y_i unmatched

• Then, pay gap cost for $y_j + OPT(i, j - 1)$

Bottom-up DP

Analysis: $\Theta(mn)$ time and space. English words or sentences: m, n $\leq 10,..,20$. Computational biology: m = n = 100,000. 10 billions ops OK, but 40GB array?

Optimizing Memory

If we are not using strong induction in the DP, we just need to use the last (row) of computed values.

DP with O(m + n) memory

- Keep an Old array containing values of the last row
- Fill out the new values in a New array
- Copy new to old at the end of the loop

Advantage of a bottom-up DP:

It is much easier to optimize the space.

Longest Path in a DAG

Longest Path in a DAG

Goal: Given a DAG G, find the longest path.

Recall: A directed graph G is a DAG if it has no cycle.

This problem is NP-hard for general directed graphs:

- It has the Hamiltonian Path as a special case

Q: What is the right ordering?

Remember, we have to use that G is a DAG, ideally in defining the ordering

We saw that every DAG has a topological sorting So, let's use that as an ordering.

Suppose we have labelled the vertices such that (i, j) is a directed edge only if i < j.

Let OPT(j) = length of the longest path ending at jSuppose in the longest path ending at j, last edge is (i, j). Then, none of the i + 1, ..., j - 1 are in this path since topological ordering. Furthermore the path ending at i must be the longest path ending at i,

OPT(j) = OPT(i) + 1.

Suppose we have labelled the vertices such that (i, j) is a directed edge only if i < j.

Let OPT(j) = length of the longest path ending at j

$$OPT(j) = \begin{cases} 0 & \text{If } j \text{ is a source} \\ 1 + \max_{i:(i,j) \text{ an edge}} OPT(i) & 0.W. \end{cases}$$

Let G be a DAG given with a topological sorting: For all edges (i, j) we have i<j.

```
Compute-OPT(j) {
    if (in-degree(j)==0)
        return 0
    if (M[j]==empty)
        M[j]=0;
        for all edges (i,j)
            M[j] = max(M[j],1+Compute-OPT(i))
        return M[j]
}
Output max(M[1],...,M[n])
```

```
Running Time: O(n + m)
Memory: O(n)
Can we output the longest path?
```

Outputting the Longest Path

```
Let G be a DAG given with a topological sorting: For all edges
(i, j) we have i<j.
Initialize Parent[j]=-1 for all j.
Compute-OPT(j) {
   if (in-degree(j)==0)
     return 0
   if (M[j]==empty)
     M[j]=0;
                                         Record the entry that
     for all edges (i,j)
                                     we used to compute OPT(j)
       if (M[j] < 1 + Compute - OPT(i))
         M[j]=1+Compute-OPT(i)
         Parent[j]=i
   return M[j]
}
Let M[k] be the maximum of M[1],...,M[n]
While (Parent[k]!=-1)
   Print k
   k=Parent[k]
```