CSE 421

Dynamic Programming

Shayan Oveis Gharan

Knapsack Problem

Knapsack Problem

Given n objects and a "knapsack." Item i weighs $w_{i}>0$ kilograms (an integer) and value $v_{i} \geq 0$. Knapsack has capacity of W kilograms.
Goal: fill knapsack so as to maximize total value.

Ex: OPT is $\{3,4\}$ with (weight 10) and value 36.
$\qquad$$W=11$ 1 1 2 2 5 3 3 14 4 4 22 6

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items $1, \ldots, i$ of weight $\leq W$.
Case 1: OPT(i) does not select item i

- In this case $\operatorname{OPT}(i)=O P T(i-1)$

Case 2: OPT(i) selects item i

- In this case, item i does not immediately imply we have to reject other items
- The problem does not reduce to $\operatorname{OPT}(i-1)$ because we now want to pack as much value into box of weight $\leq W-w_{i}$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthenning Hypothesis)

Let $O P T(i, w)=$ Max value subset of items $1, \ldots, i$ of weight $\leq w$ where $0 \leq i \leq n$ and $0 \leq w \leq W$.

Case 1: $\operatorname{OPT}(i, w)$ selects item i

- In this case, $O P T(i, w)=v_{i}+O P T\left(i-1, w^{2} w_{i}\right)$

Take best of the two
Case 2: OPT (i, w) does not select item i

- In this case, $\operatorname{OPT}(i, w)=O P T(i-1, w)$.

Therefore,

$$
\operatorname{OPT}(i, w)= \begin{cases}0 & \text { If } i=0 \\ \operatorname{OPT}(i-1, w) & \text { If } w_{i}>w \\ \max \left(\operatorname{OPT}(i-1, w), v_{i}+\operatorname{OPT}\left(i-1, w-w_{i}\right)\right. & \text { o.w., }\end{cases}
$$

DP for Knapsack

```
Compute-OPT(i,w)
    if M[i,w] == empty
        if (i==0)
        M[i,w]=0
        else if (wis > w)
            M[i,w]=Comp-OPT(i-1,w)
        else
            M[i,w]= max {Comp-OPT(i-1,w), vi
    return M[i, w]
```


Bottom up DP for Knapsack

```
for w = 0 to w
    M[0, w] = 0
for i = 1 to n
    for w = 1 to w
        if (wi}>>w
        M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}
return M[n, W]
```


DP for Knapsack

$$
w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0											
$n+1$	\{1,2 \}	0											
	\{ $1,2,3$ \}	0											
	$\{1,2,3,4\}$	0											
\downarrow	$\{1,2,3,4,5\}$	0											

$$
W=11
$$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \curvearrowleft \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
w+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0											
	\{ 1, 2, 3 \}	0											
	$\{1,2,3,4\}$	0											
	$\{1,2,3,4,5\}$	0											

$$
W=11
$$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=\operatorname{m}[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
\ldots \quad W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7								
	$\{1,2,3\}$	0	1										
	$\{1,2,3,4\}$	0	1										
\downarrow	$\{1,2,3,4,5\}$	0	1										

$$
\text { OPT: }\{4,3\}
$$

$$
\text { value }=22+18=40
$$

$$
W=11
$$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

$$
\ldots \quad W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{1\}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2 \}	0	1	6	7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18	19					
	$\{1,2,3,4\}$	0	1										
\downarrow	$\{1,2,3,4,5\}$	0	1										

OPT: $\{4,3\}$

$$
\text { value }=22+18=40
$$

$W=11$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

W+1

| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 11 |
| :---: |
| $n+1$ |

OPT: $\{4,3\}$
value $=22+18=40$
$W=11$

$$
\begin{aligned}
& \text { if }\left(w_{i}>w\right) \\
& \quad M[i, w]=M[i-1, w] \\
& \text { else } \\
& \quad M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}
\end{aligned}
$$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

DP for Knapsack

W+1

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:
There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum
in time Poly(n, log W).

DP Ideas so far

- You may have to define an ordering to decrease \#subproblems
- $\operatorname{OPT}(\mathrm{i}, \mathrm{w})$ is exactly the predicate of induction
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction

RNA Secondary Structure

RNA Secondary Structure

RNA: A String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

RNA Secondary Structure (Formal)

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:
[Watson-Crick.]

- S is a matching and
- each pair in S is a Watson-Crick pair: A-U, U-A, C-G, or G-C.
[No sharp turns.]: The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
[Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy: Usual hypothesis is that an RNA molecule will maximize total free energy.

Goal: Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

Secondary Structure (Examples)

DP: First Attempt

First attempt. Let $O P T(n)=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{n}$.

Suppose b_{n} is matched with b_{t} in $\operatorname{OPT}(n)$.
What IH should we use?
match b_{+}and b_{n}

Difficulty: This naturally reduces to two subproblems

- Finding secondary structure in b_{1}, \ldots, b_{t-1}, i.e., OPT(t-1)
- Finding secondary structure in b_{t+1}, \ldots, b_{n-1}, ???

DP: Second Attempt

Definition: $O P T(i, j)=$ maximum number of base pairs in a secondary structure of thê substring $b_{i}, b_{i+1}, \ldots, b_{j}$

The most important part of a correct DP; It fixes IH
Case 1: If $j-i \leq 4$.

- $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.

Case 2: Base b_{j} is not involved in a pair.

- OPT(i, j) = OPT(i, j-1)

Case 3: Base b_{j} pairs with b_{t} for some $i \leq t<j-4$

- non-crossing constraint decouples resulting sub-problems
- $O P T(i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Recursive Code

```
Let M[i,j]=empty for all i,j.
Compute-OPT(i,j) {
    if (j-i <= 4)
        return 0;
    if (M[i,j] is empty)
        M[i,j]=Compute-OPT(i,j-1)
        for t=i to j-5 do
            if (b}\mp@subsup{b}{t}{},\mp@subsup{b}{j}{}\mathrm{ is in {A-U, U-A, C-G, G-C})
            M[i,j]=max(M[i,j], 1+Compute-OPT(i,t-1) +
                        Compute-OPT(t+1,j-1))
    return M[j]
}
```

Does this code terminate?
What are we inducting on?

Formal Induction

Let $O P T(i, j)=$ maximum number of base pairs in a secondary structure of the substring $b_{i}, b_{i+1}, \ldots, b_{j}$
Base Case: $\operatorname{OPT}(i, j)=0$ for all i, j where $|j-i| \leq 4$.
IH: For some $\ell \geq 4$, Suppose we have computed $\operatorname{OPT}(i, j)$ for all i, j where $|i-j| \leq \ell$.

IS: Goal: We find $O P T(i, j)$ for all i, j where $|i-j|=\ell+1$. Fix i, j such that $|i-j|=\ell+1$.
Case 1: Base b_{j} is not involved in a pair.

- $\operatorname{OPT}(\mathrm{i}, \mathrm{j})=\operatorname{OPT}(\mathrm{i}, \mathrm{j}-1)[$ this we know by IH since $|i-(j-1)|=\ell]$

Case 2: Base b_{j} pairs with b_{t} for some $\mathrm{i} \leq \mathrm{t}<\mathrm{j}-4$

- OPT $(i, j)=\max _{t: b_{i} \text { pairs with } b_{t}}\{1+O P T(i, t-1)+O P T(t+1, j-1)\}$

Bottom-up DP

```
for \(k=1,2, \ldots, n-1\)
    for \(i=1,2, \ldots, n-1\)
        \(j=i+k\)
        if (j-i <= 4)
            M[i,j]=0;
            else
```



```
            \(M[i, j]=M[i, j-1]\)
            j
            for \(t=i\) to \(j-5\) do
                if \(\left(b_{t}, b_{j}\right.\) is in \(\left.\{A-U, U-A, C-G, G-C\}\right)\)
                \(M[i, j]=\max (M[i, j], 1+M[i, t-1]+M[t+1, j-1])\)
    return \(\mathrm{M}[1, \mathrm{n}]\)
\}
```

Running Time: $O\left(n^{3}\right)$

Lesson

We may not always induct on i or w to get to smaller subproblems.

We may have to induct on $|i-j|$ or $i+j$ when we are dealing with more complex problems, e.g., intervals

