1 Interval Scheduling

Given n jobs sort them based on their finishing time, and perhaps after renaming, assume that $f(1) \leq f(2) \leq \cdots \leq f(n)$.

Now for $1 \leq j \leq n$, define $O P T(j):=$ the sum of the weights of the maximum weight compatible set of jobs among $1, \ldots j$ with respect to the above sorted order.
Base Case: $\operatorname{OPT}(0)=0$ since we have no jobs.
IH: Suppose we have computed $O P T(i)$ for all $i<j$ for some $j \geq 1$.
IS: We want to find $\operatorname{OPT}(j)$. First, we guess whether job j is in the optimum solution or not.

- Case 1: Job j is chosen in the optimum. Then, every job not compatible with j are not in $\operatorname{OPT}(\mathrm{j})$. Let $p(j)$ be the largest index job which end before start of job j start, i.e., $p(j)=\max \{i: f(i) \leq s(j)\}$.
We claim that all jobs $1, \ldots, p(j)$ are compatible with j and all jobs $p(j)+1, \ldots, j-1$ are not compatible. This is because of sorting: Every $i \leq p(j)$ satisfies $f(i) \leq f(p(j)) \leq s(j)$ so it is compatible. On the other hand, because $p(j)$ is the largest index, every job $i>p(j)$ satisfies $s(j)<f(i) \leq f(j)$ so it is in-comaptible.
Using the above claim, when including job j, the rest of jobs chosen in $\operatorname{OPT}(j)$ must be the maximum weight set of compatible jobs from $1, \ldots, p(j)$. But, that is exactly the subproblem $O P T(p(j))$. So, in this case we have $O P T(j)=v_{j}+O P T(p(j))$.
- Case 2: Job \mathbf{j} is not in the optimum. Then, we can simply remove j and $O P T(j)$ would be the maximum weight set of compatible jobs in the range $1, \ldots, j-1, O P T(j)=O P T(j-1)$.

Since OPT can take the best of the above two cases, and we have a maximization problem,

$$
O P T(j)=\max \left\{O P T(j-1), v_{j}+O P T(p(j))\right\}
$$

Once we compute $O P T(j)$ for all j we can simply output, $O P T(n)$.

