CSE421: Design and Analysis of Algorithms

May 17, 2022

Lecturer: Shayan Oveis Gharan

Lecture 19 Interval Scheduling Proof

1 Interval Scheduling

Given n jobs sort them based on their finishing time, and perhaps after renaming, assume that $f(1) \leq f(2) \leq \cdots \leq f(n)$.

Now for $1 \le j \le n$, define OPT(j) :=the sum of the weights of the maximum weight compatible set of jobs among $1, \ldots j$ with respect to the above sorted order.

Base Case: OPT(0) = 0 since we have no jobs.

IH: Suppose we have computed OPT(i) for all i < j for some $j \ge 1$.

IS: We want to find OPT(j). First, we guess whether job j is in the optimum solution or not.

• Case 1: Job j is chosen in the optimum. Then, every job not compatible with j are not in OPT(j). Let p(j) be the largest index job which end before start of job j start, i.e., $p(j) = \max\{i : f(i) \le s(j)\}.$

We claim that all jobs $1, \ldots, p(j)$ are compatible with j and all jobs $p(j) + 1, \ldots, j - 1$ are not compatible. This is because of sorting: Every $i \leq p(j)$ satisfies $f(i) \leq f(p(j)) \leq s(j)$ so it is compatible. On the other hand, because p(j) is the largest index, every job i > p(j) satisfies $s(j) < f(i) \leq f(j)$ so it is in-compatible.

Using the above claim, when including job j, the rest of jobs chosen in OPT(j) must be the maximum weight set of compatible jobs from $1, \ldots, p(j)$. But, that is exactly the subproblem OPT(p(j)). So, in this case we have $OPT(j) = v_j + OPT(p(j))$.

• Case 2: Job j is not in the optimum. Then, we can simply remove j and OPT(j) would be the maximum weight set of compatible jobs in the range $1, \ldots, j-1, OPT(j) = OPT(j-1)$.

Since OPT can take the best of the above two cases, and we have a maximization problem,

 $OPT(j) = \max\{OPT(j-1), v_j + OPT(p(j))\}.$

Once we compute OPT(j) for all j we can simply output, OPT(n).