CSE421: Design and Analysis of Algorithms May 17, 2022

Lecturer: Shayan Owveis Gharan Lecture 19 Interval Scheduling Proof

1 Interval Scheduling

Given n jobs sort them based on their finishing time, and perhaps after renaming, assume that
f) < F2) < < f(n).

Now for 1 < j < n, define OPT(j) :=the sum of the weights of the maximum weight compatible
set of jobs among 1, ... 7 with respect to the above sorted order.
Base Case: OPT(0) = 0 since we have no jobs.
IH: Suppose we have computed OPT (i) for all i < j for some j > 1.
IS: We want to find OPT(j). First, we guess whether job j is in the optimum solution or not.

e Case 1: Job j is chosen in the optimum. Then, every job not compatible with j are

not in OPT(j). Let p(j) be the largest index job which end before start of job j start, i.e.,
p(j) = max{i: f(i) < s(j)}-
We claim that all jobs 1,...,p(j) are compatible with j and all jobs p(j)+1,...,7—1 are not
compatible. This is because of sorting: Every i < p(j) satisfies f(i) < f(p(j)) < s(j) so it is
compatible. On the other hand, because p(j) is the largest index, every job i > p(j) satisfies
s(j) < f(i) < f(j) so it is in-comaptible.

Using the above claim, when including job j, the rest of jobs chosen in OPT(j) must be the
maximum weight set of compatible jobs from 1,...,p(j). But, that is exactly the subproblem
OPT(p(j)).- So, in this case we have OPT(j) = v; + OPT(p(j)).

e Case 2: Job j is not in the optimum. Then, we can simply remove j and OPT(j) would
be the maximum weight set of compatible jobs in the range 1,...,j—1, OPT(j) = OPT(j—1).

Since OPT can take the best of the above two cases, and we have a maximization problem,
OPT(j) = max{OPT(j — 1),v; + OPT(p(j))}

Once we compute OPT'(j) for all j we can simply output, OPT(n).

19 Interval Scheduling Proof-1



