
CSE421: Design and Analysis of Algorithms May 17, 2022

Lecturer: Shayan Oveis Gharan Lecture 19 Interval Scheduling Proof

1 Interval Scheduling

Given n jobs sort them based on their finishing time, and perhaps after renaming, assume that
f(1) ≤ f(2) ≤ · · · ≤ f(n).

Now for 1 ≤ j ≤ n, define OPT (j) :=the sum of the weights of the maximum weight compatible
set of jobs among 1, . . . j with respect to the above sorted order.
Base Case: OPT (0) = 0 since we have no jobs.
IH: Suppose we have computed OPT (i) for all i < j for some j ≥ 1.
IS: We want to find OPT (j). First, we guess whether job j is in the optimum solution or not.

• Case 1: Job j is chosen in the optimum. Then, every job not compatible with j are
not in OPT(j). Let p(j) be the largest index job which end before start of job j start, i.e.,
p(j) = max{i : f(i) ≤ s(j)}.
We claim that all jobs 1, . . . , p(j) are compatible with j and all jobs p(j)+1, . . . , j−1 are not
compatible. This is because of sorting: Every i ≤ p(j) satisfies f(i) ≤ f(p(j)) ≤ s(j) so it is
compatible. On the other hand, because p(j) is the largest index, every job i > p(j) satisfies
s(j) < f(i) ≤ f(j) so it is in-comaptible.

Using the above claim, when including job j, the rest of jobs chosen in OPT (j) must be the
maximum weight set of compatible jobs from 1, . . . , p(j). But, that is exactly the subproblem
OPT (p(j)). So, in this case we have OPT (j) = vj +OPT (p(j)).

• Case 2: Job j is not in the optimum. Then, we can simply remove j and OPT (j) would
be the maximum weight set of compatible jobs in the range 1, . . . , j−1, OPT (j) = OPT (j−1).

Since OPT can take the best of the above two cases, and we have a maximization problem,

OPT (j) = max{OPT (j − 1), vj +OPT (p(j))}.

Once we compute OPT (j) for all j we can simply output, OPT (n).

19 Interval Scheduling Proof-1


