

Dynamic Programming

Shayan Oveis Gharan

Q/A

- How to think, how to write?
 - Many cases it is better to spend more time on thinking than writing.
 - Try to write concise proofs for HW problems.
 - Make sure you use all assumptions of the problem.

Sample Justification for Problem 1

Part (a): Every instance of stable matching has at least two stable matchings:

F BC every instance has at least 1 stable matching

F BC if we have one company and one applicant there is only one stable matching.

Part (c): If every vertex of G has even degree then every cut of G has even #edges.

T: BC every cycle has an even number of edges in every cut

T: BC we prove the contrapositive in HW2-P1.

Sample Soln of Problem 2 Midterm

Alg: Use BFS (as in class) to find connected components. Say i-th connected comp has n_i vertices and m_i edges. If $m_i \ge n_i$ for some i output yes. Otherwise output no.

Runtime: It takes O(m+n) to find connected components.

Correctness: First suppose that for some i, say i = 1, we have $m_1 \ge n_1$. Then, by in-class exercise this component has a cycle. So, if we remove an edge of the cycle we don't disconnect (as there is another path to connect endpoints). So, we should output yes.

O.w., suppose for every i, $m_i < n_i$. So every connected component must be a tree. And, we if we delete any edge of a tree we will disconnect it. So, we should output no.

Sample Soln of Problem 3 Midterm

A(T) If T has 2 vertices color its edge arbitrarily and return O.w., Let v be a leaf and let T - v. Run A(T') to color edges of T'. Use same colors for T Let u be neighbor of v in T. Find a color {1,..,k} unused in edges neighbor of u in T' and color (u, v) with that.

Runtime: We make n function calls each runs in O(n). So $O(n^2)$.

Correctness: P(n)= For any tree *T* with n vertices s.t., $deg(v) \le k$ for all v, we properly color edges with k colors".

Base Case: P(2) holds since only one edge.

IH: Assume P(n-1) for some $n \ge 2$.

IS: Let T be arbitrary tree with n vertices s.t., $deg(v) \le k$ for all v. Let v be a leaf and T' = T - v. In class we showed T' is tree. Also degrees are still at most k. So, by IH we can color edges of T' with k colors. Let u be neighbor of v. Since $deg(u) \le k$ in T, u has at most k-1 edges other than (u,v). So there is a color in $\{1,...,k\}$ not used. Color (u,v) with that color and we get a proper 5 coloring of edges of T.

Dynamic Programming

Algorithmic Paradigm

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems. Memorize the answers to obtain polynomial time ALG.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"

Dynamic Programming Applications

Areas:

- Bioinformatics
- Control Theory
- Information Theory
- Operations Research
- Computer Science: Theory, Graphics, AI, ...

Some famous DP algorithms

- Viterbi for hidden Markov Model
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming

Dynamic programming is nothing but algorithm design by induction!

We just "remember" the subproblems that we have solved so far to avoid re-solving the same sub-problem many times.

Weighted Interval Scheduling

Interval Scheduling

- Job j starts at s(j) and finishes at f(j) and has weight w_j
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling: Review

Recall: Greedy algorithm works if all weights are 1:

- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.
 OBS: Greedy ALG fails spectacularly (no approximation ratio) if arbitrary weights are allowed:

Weighted Job Scheduling by Induction

Suppose 1, ..., *n* are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling for < n jobs.

IS: Goal: For any n jobs we can compute OPT. Case 1: Job n is not in OPT. -- Then, just return OPT of 1, ..., n - 1. Case 2: Job n is in OPT. -- Then, delete all jobs not compatible with n and recurse. Q: Are we done?

A: No, How many subproblems are there? Potentially 2^n all possible subsets of jobs.

A Bad Example

Consider jobs n/2+1,...,n. These decisions have no impact on one another.

How many subproblems do we get?

Sorting to Reduce Subproblems

IS: For jobs 1,...,n we want to compute OPT Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$

Case 1: Suppose OPT has job n.

- So, all jobs i that are not compatible with n are not OPT
- Let p(n) = largest index i < n such that job i is compatible with n.
- Then, we just need to find OPT of 1, ..., p(n)

Sorting to reduce Subproblems

IS: For jobs 1,...,n we want to compute OPT Sorting Idea: Label jobs by finishing time $f(1) \le \dots \le f(n)$

Case 1: Suppose OPT has job n.

So, all jobs i that are not compatible with n are not OPT

Q: Have we made any progress (still reducing to two subproblems)? A: Yes! This time every subproblem is of the form 1, ..., i for some iSo, at most n possible subproblems.

Bad Example Review

How many subproblems do we get in this sorted order?

Weighted Job Scheduling by Induction

Case 2: OPT(j) does not select job j.

• Then, OPT(j) = OPT(j-1)

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0 \\ \max\left(w_j + OPT(p(j)), OPT(j-1)\right) & \text{o.w.} \end{cases}$$

Algorithm

```
Input: n, s(1), \dots, s(n) and f(1), \dots, f(n) and w_1, \dots, w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), \dots, p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(w<sub>j</sub> + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems

 \succ So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \le f(2) \le \cdots f(n).
Compute p(1), p(2), ..., p(n)
for j = 1 to n
   M[j] = empty
M[0] = 0
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
}
```

Bottom up Dynamic Programming

You can also avoid recusion

recursion may be easier conceptually when you use induction

```
Input: n, s(1), ..., s(n) and f(1), ..., f(n) and w_1, ..., w_n.
Sort jobs by finish times so that f(1) \leq f(2) \leq \cdots f(n).
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(w<sub>j</sub> + M[p(j)], M[j-1])
}
```

Output M[n]

Claim: M[j] is value of OPT(j) Timing: Easy. Main loop is O(n); sorting is O(n log n)

Knapsack Problem

Knapsack Problem

Given *n* objects and a "knapsack."

Item *i* weighs $w_i > 0$ kilograms (an integer) and value $v_i \ge 0$.

Knapsack has capacity of *W* kilograms.

Goal: fill knapsack so as to maximize total value.

	Item	Value	Weight
Ex: OPT is $\{3, 4\}$ with (weight 10) and value 36.	1	1	2
VV = 11	2	5	3
	3	14	4
	4	22	6
	5	30	8

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: { 5, 2 } achieves only value = $35 \implies$ greedy not optimal.

Dynamic Programming: First Attempt

Let OPT(i)=Max value of subsets of items 1, ..., i of weight $\leq W$.

Case 1: OPT(i) does not select item i

- In this case OPT(i) = OPT(i-1)

Case 2: OPT(i) selects item i

- In this case, item *i* does not immediately imply we have to reject other items
- The problem does not reduce to OPT(i-1) because we now want to pack as much value into box of weight $\leq W w_i$

Conclusion: We need more subproblems, we need to strengthen IH.

Stronger DP (Strengthenning Hypothesis)

Let OPT(i, w) = Max value subset of items 1, ..., *i* of weight $\leq w$ where $0 \leq i \leq n$ and $0 \leq w \leq W$.

Case 1: OPT(i, w) selects item *i*

• In this case, $OPT(i, w) = v_i + OPT(i - 1, w - w_i)$

Case 2: OPT(i, w) does not select item i

• In this case, OPT(i, w) = OPT(i - 1, w).

Therefore,

$$OPT(i,w) = \begin{cases} 0 & \text{If } i = 0\\ OPT(i-1,w) & \text{If } w_i > w\\ \max(OPT(i-1,w), v_i + OPT(i-1,w-w_i) & \text{o.w.}, \end{cases}$$

Take best of the two

```
Compute-OPT(i,w)
if M[i,w] == empty
if (i==0)
    M[i,w]=0
    recursive
else if (w<sub>i</sub> > w)
    M[i,w]=Comp-OPT(i-1,w)
    else
        M[i,w]= max {Comp-OPT(i-1,w), v<sub>i</sub> + Comp-OPT(i-1,w-w<sub>i</sub>)}
    return M[i, w]
```

```
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
    if (w<sub>i</sub> > w)
        M[i, w] = M[i-1, w]
    else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}
```

```
return M[n, W]
```

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0											
 n + 1	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
↓ ▼	{1,2,3,4,5}	0											

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w] 👉 else	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0											
	{ 1, 2, 3 }	0											
	{ 1, 2, 3, 4 }	0											
Ļ	{1,2,3,4,5}	0											

	Item	Value	Weight
W = 11	1	1	1
if $(w_i > w)$	2	6	2
M[i, w] = M[i-1, w] else	3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}$	4	22	6
	5	28	7

OPT: { 4, 3 } value = 22 + 18 = 40		Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w] else		3	18	5
M[i, w] = max {M[i-1, w], v_i + M[i-1,	w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19					
	{ 1, 2, 3, 4 }	0	1										
Ļ	{1,2,3,4,5}	0	1										

OPT: { 4, 3 } value = 22 + 18 = 40	14/ 14	Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w] else		3	18	5
$M[i, w] = max \{M[i-1, w], v_i + M[i-1]\}$	L, w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29		
↓ ↓	{1,2,3,4,5}	0	1										

OPT: { 4, 3 } value = 22 + 18 = 40	N4/ 11	Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w] else		3	18	5
M[i, w] = max {M[i-1, w], v_i + M[i-1	, w-w _i]}	4	22	6
		5	28	7

		0	1	2	3	4	5	6	7	8	9	10	11
	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
 n + 1	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
↓ ▼	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40		Item	Value	Weight
	W = 11	1	1	1
if $(w_i > w)$		2	6	2
M[i, w] = M[i-1, w] else		3	18	5
$M[i, w] = \max \{M[i-1, w], v_i + M[i-1]\}$	1, w-w _i]}	4	22	6
		5	28	7

Knapsack Problem: Running Time

Running time: $\Theta(n \cdot W)$

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm:

There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum in time Poly(n, log W).

DP Ideas so far

- You may have to define an ordering to decrease #subproblems
- OPT(i,w) is exactly the predicate of induction
- You may have to strengthen DP, equivalently the induction, i.e., you have may have to carry more information to find the Optimum.
- This means that sometimes we may have to use two dimensional or three dimensional induction