CSE 421

Approximation Alg

Shayan Oveis Gharan
Midterm

Congratulations! You did great in the midterm
Median ~ 74.5%
• I did very well in the midterm; so I’ll get a 4.0, Yaay! (not really)
 Final is harder and has a significant impact on your final gpa
• I did terrible in midterm, can I still get 3.9 or 4.0? Yes!
• If you are way below median below 50% try harder
Final will be harder
Q/A

• HW problems are too hard for me
 • We have resources to prepare for HW
 • problem solving section, OH, …
 • Exercises in the book.
 • USA Olympiad training website: https://train.usaco.org
 • Difficult HW problems prepare you for real world algorithm problems

• Grading rules are too strict
 • Every week I spent hours to train TAs how to grade. The well-defined rubric is my effort to have a systematic grading guidelines that all TAs can follow. Without it everybody grades arbitrarily.
 • Everything is not about grade! We are here to learn.

• TAs have not responded to my re-grade requests
 • TAs are also humans; give them sometime.
 • Send me an email or come to OH, I’ll look into your request

• What is the point of this course after all? Why do you have to prove correctness of an algorithm?
 • Often algorithms that we design are incorrect.
Approximation Algorithms
Approximation Algorithm

Polynomial-time Algorithms with a guaranteed approximation ratio.

\[\alpha = \frac{\text{Cost of computed solution}}{\text{Cost of the optimum}} \]

worst case over all instances.

Goal: For each NP-hard problem find an approximation algorithm with the best possible approximation ratio.
Vertex Cover

Given a graph $G=(V,E)$, Find smallest set of vertices touching every edge
A Different Greedy Rule

Greedy 2: Iteratively, pick both endpoints of an uncovered edge.

Vertex cover = 6
Thm: Size of greedy (2) vertex cover is at most twice as big as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges e_1, \ldots, e_k. Since these edges do not touch, every valid cover must pick one vertex from each of these edges! i.e., $OPT \geq k$.

But the size of greedy cover is $2k$. So, Greedy is a 2-approximation.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

 e.g., a company wants to hire employees with certain skills.
Set Cover

Given a number of sets on a ground set of elements,

Goal: choose minimum number of sets that cover all.

Set cover = 4
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes # new elements covered
A Greedy Algorithm

Strategy: Pick the set that maximizes \# new elements covered

Thm: Greedy has $\ln n$ approximation ratio
A Tight Example for Greedy

Greedy = 5

OPT = 2
Greedy Gives $O(\log(n))$ approximation

Thm: If the best solution has k sets, greedy finds at most $k \ln(n)$ sets.

Pf: Suppose OPT=k

There is a set that covers $1/k$ fraction of remaining elements, since there are k sets that cover all remaining elements.

So **in each step**, algorithm will cover $1/k$ fraction of remaining elements.

#elements uncovered after t steps

\[
\leq n \left(1 - \frac{1}{k} \right)^t \leq n e^{-\frac{t}{k}}
\]

So after $t = k \ln n$ steps, # uncovered elements < 1.
Approximation Alg Summary

• To design approximation Alg, always find a way to lower bound OPT

• The best known approximation Alg for vertex cover is the greedy.
 – It has been open for 50 years to obtain a polynomial time algorithm with approximation ratio better than 2

• The best known approximation Alg for set cover is the greedy.
 – It is NP-Complete to obtain better than $\ln n$ approximation ratio for set cover.
Dynamic Programming
Algorithmic Paradigm

Greedy: Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer: Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems. Memorize the answers to obtain polynomial time ALG.
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

Dynamic programming = planning over time.

Secretary of Defense was hostile to mathematical research.

Bellman sought an impressive name to avoid confrontation.

- "it's impossible to use dynamic in a pejorative sense"
- "something not even a Congressman could object to"
Dynamic Programming Applications

Areas:
- Bioinformatics
- Control Theory
- Information Theory
- Operations Research
- Computer Science: Theory, Graphics, AI, …

Some famous DP algorithms
- Viterbi for hidden Markov Model
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
Dynamic programming is nothing but algorithm design by induction!

We just "remember" the subproblems that we have solved so far to avoid re-solving the same sub-problem many times.
Weighted Interval Scheduling
Interval Scheduling

- Job j starts at $s(j)$ and finishes at $f(j)$ and has weight w_j
- Two jobs compatible if they don’t overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall: Greedy algorithm works if all weights are 1:
- Consider jobs in ascending order of finishing time
- Add job to a subset if it is compatible with prev added jobs.

OBS: Greedy ALG fails spectacularly (no approximation ratio) if arbitrary weights are allowed:
Weighted Job Scheduling by Induction

Suppose 1, ..., \(n \) are all jobs. Let us use induction:

IH (strong ind): Suppose we can compute the optimum job scheduling for \(< n\) jobs.

IS: Goal: For any \(n \) jobs we can compute OPT.

Case 1: Job \(n \) is not in OPT.
-- Then, just return OPT of \(1, ..., n - 1 \).

Case 2: Job \(n \) is in OPT.
-- Then, delete all jobs not compatible with \(n \) and recurse.

Q: Are we done?
A: No, How many subproblems are there? Potentially \(2^n \) all possible subsets of jobs.

Take best of the two
A Bad Example

Consider jobs \(n/2+1, \ldots, n \). These decisions have no impact on one another.
How many subproblems do we get?
Sorting to Reduce Subproblems

IS: For jobs 1,…,n we want to compute OPT

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, \ldots, p(n)$
IS: For jobs 1, ..., n we want to compute OPT

Sorting Idea: Label jobs by finishing time $f(1) \leq \cdots \leq f(n)$

Case 1: Suppose OPT has job n.
- So, all jobs i that are not compatible with n are not OPT
- Let $p(n) =$ largest index $i < n$ such that job i is compatible with n.
- Then, we just need to find OPT of $1, 2, \ldots, p(n)$

Case 2: OPT does not select job n.
- Then, OPT is just the optimum $1, 2, \ldots, n - 1$

Q: Have we made any progress (still reducing to two subproblems)?
A: Yes! This time every subproblem is of the form $1, 2, \ldots, i$ for some i
So, at most n possible subproblems.
Bad Example Review

How many subproblems do we get in this sorted order?

Diagram showing a timeline with subproblems labeled from 1 to n, with dots representing time points.
Weighted Job Scheduling by Induction

Sorting Idea: Label jobs by finishing time \(f(1) \leq \cdots \leq f(n) \)

Let \(\text{OPT}(j) \) denote the \(\text{OPT} \) solution of \(1, \ldots, j \)

To solve \(\text{OPT}(j) \):

Case 1: \(\text{OPT}(j) \) has job \(j \).
- So, all jobs \(i \) that are not compatible with \(j \) are not \(\text{OPT}(j) \).
- Let \(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
- So \(\text{OPT}(j) = \text{OPT}(p(j)) \cup \{j\} \).

Case 2: \(\text{OPT}(j) \) does not select job \(j \).
- Then, \(\text{OPT}(j) = \text{OPT}(j - 1) \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left(w_j + \text{OPT}(p(j)), \text{OPT}(j - 1) \right) & \text{otherwise}
\end{cases}
\]
Algorithm

Input: \(n, s(1), \ldots, s(n) \) and \(f(1), \ldots, f(n) \) and \(w_1, \ldots, w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq \cdots f(n) \).

Compute \(p(1), p(2), \ldots, p(n) \)

Compute-Opt\((j) \) {
 * if* \((j = 0) \)
 * return* 0
 * else*
 * return* \(\max(w_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1)) \)
}
Recursive Algorithm Fails

Even though we have only n subproblems, we do not store the solution to the subproblems

- So, we may re-solve the same problem many many times.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence

$$p(1) = 0, \ p(j) = j - 2$$
Algorithm with Memoization

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.

Input: \(n, s(1), ..., s(n) \) and \(f(1), ..., f(n) \) and \(w_1, ..., w_n \).

Sort jobs by finish times so that \(f(1) \leq f(2) \leq ... f(n) \).

Compute \(p(1), p(2), ..., p(n) \)

for \(j = 1 \) to \(n \)
 \(M[j] = \) empty

\(M[0] = 0 \)

\(M-\text{Compute-Opt}(j) \) {
 if \((M[j] \) is empty)
 \(M[j] = \max(w_j + M-\text{Compute-Opt}(p(j)), M-\text{Compute-Opt}(j-1)) \)
 return \(M[j] \)
}

Memoization. Compute and Store the solution of each sub-problem in a cache the first time that you face it. lookup as needed.
Bottom up Dynamic Programming

You can also avoid recursion
• recursion may be easier conceptually when you use induction

Input: n, s(1),…,s(n) and f(1),…,f(n) and w₁,…,wₙ.

Sort jobs by finish times so that f(1) ≤ f(2) ≤ … f(n).

Compute p(1),p(2),…,p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(w_j + M[p(j)], M[j-1])
}

Output M[n]

Claim: M[j] is value of OPT(j)

Timing: Easy. Main loop is O(n); sorting is O(n log n)
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
\begin{array}{|c|c|c|c|}
\hline
j & w_j & p(j) & \text{OPT}(j) \\
\hline
0 & & & \emptyset \\
1 & 3 & 0 & \\
2 & 4 & 0 & \\
3 & 1 & 0 & \\
4 & 3 & 1 & \\
5 & 4 & 0 & \\
6 & 3 & 2 & \\
7 & 2 & 3 & \\
8 & 4 & 5 & \\
\hline
\end{array}
\]
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.

$p(j) =$ largest index $i < j$ such that job i is compatible with j.

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[\begin{array}{c|c|c|c}
 j & w_j & p(j) & \text{OPT}(j) \\
 \hline
 0 & & & \\
 1 & 3 & 0 & 3 \\
 2 & 4 & 0 & 4 \\
 3 & 1 & 0 & 4 \\
 4 & 3 & 1 & 6 \\
 5 & 4 & 0 & \\
 6 & 3 & 2 & \\
 7 & 2 & 3 & \\
 8 & 4 & 5 & \\
\end{array} \]
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) =$ largest index $i < j$ such that job i is compatible with j.

![Graph showing job labels by finishing time with corresponding table values.]

<table>
<thead>
<tr>
<th>j</th>
<th>w_j</th>
<th>$p(j)$</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

<table>
<thead>
<tr>
<th>j</th>
<th>(w_j)</th>
<th>(p(j))</th>
<th>OPT(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).
\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).
Example

Label jobs by finishing time: $f(1) \leq \cdots \leq f(n)$.
$p(j) = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j$.

\begin{tabular}{|c|c|c|c|}
\hline
j & w_j & p(j) & OPT(j) \\
\hline
0 & & 0 & 0 \\
\hline
1 & 3 & 0 & 3 \\
\hline
2 & 4 & 0 & 4 \\
\hline
3 & 1 & 0 & 4 \\
\hline
4 & 3 & 1 & 6 \\
\hline
5 & 4 & 0 & 6 \\
\hline
6 & 3 & 2 & 7 \\
\hline
7 & 2 & 3 & 7 \\
\hline
8 & 4 & 5 & 10 \\
\hline
\end{tabular}
Example

Label jobs by finishing time: \(f(1) \leq \cdots \leq f(n) \).

\(p(j) = \) largest index \(i < j \) such that job \(i \) is compatible with \(j \).

\[
\begin{array}{|c|c|c|c|}
\hline
j & w_j & p(j) & \text{OPT}(j) \\
\hline
0 & & & 0 \\
1 & 3 & 0 & 3 \\
2 & 4 & 0 & 4 \\
3 & 1 & 0 & 4 \\
4 & 3 & 1 & 6 \\
5 & 4 & 0 & 6 \\
6 & 3 & 2 & 7 \\
7 & 2 & 3 & 7 \\
8 & 4 & 5 & 10 \\
\hline
\end{array}
\]