
CSE 421

Divide and Conquer: Integer
Multiplication

Shayan Oveis Gharan

1

Median

Selecting k-th smallest
Problem: Given numbers 𝑥!, … , 𝑥" and an integer 1 ≤ 𝑘 ≤ 𝑛

output the 𝑘-th smallest number
Sel(𝑥!, … , 𝑥" , 𝑘)

A simple algorithm: Sort the numbers in time O(n log n) then
return the k-th smallest in the array.

Can we do better?

Yes, in time 𝑂(𝑛) if 𝑘 = 1 or 𝑘 = 2.

Can we do 𝑂 𝑛 for all possible values of k?

Assume all numbers are distinct for simplicity.

An Idea
Choose a number 𝑤 from 𝑥!, … , 𝑥"
Define
• 𝑆# 𝑤 = 𝑥$: 𝑥$ < 𝑤
• 𝑆% 𝑤 = 𝑥$: 𝑥$ = 𝑤
• 𝑆& 𝑤 = 𝑥$: 𝑥$ > 𝑤

Solve the problem recursively as follows:
• If 𝑘 ≤ |𝑆#(𝑤)|, output 𝑆𝑒𝑙(𝑆# 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆# 𝑤 + 𝑆% 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆& 𝑤 , 𝑘 − |𝑆# 𝑤 | − |𝑆% 𝑤 |)

Ideally want 𝑆# 𝑤 , |𝑆&(𝑤)| ≤ 𝑛/2. In this case ALG runs in
𝑂 𝑛 + 𝑂 "

' + 𝑂 "
(+⋯+ 𝑂 1 = 𝑂 𝑛 .

Can be computed in
linear time

How to choose w?
Suppose we choose w uniformly at random

similar to the pivot in quicksort.
Then, 𝔼 𝑆! 𝑤 = 𝔼 𝑆" 𝑤 = 𝑛/2. Algorithm runs in 𝑂(𝑛) in

expectation.
Can we get 𝑂(𝑛) running time deterministically?
• Partition numbers into sets of size 3.
• Sort each set (takes O(n))
• 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/6)

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤w

• 𝑆# 𝑤 ≥ 2 "
) = "

*

• 𝑆& 𝑤 ≥ 2 "
) = "

* .

So, what is the running time?

How to lower bound 𝑆! 𝑤 , |𝑆" 𝑤 |?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

≤
<w< <<<< < < < < <

< 𝒘

> 𝒘

𝑛
3 ≤ |𝑆! 𝑤 |, 𝑆" 𝑤 ≤

2𝑛
3

• If 𝑘 ≤ |𝑆!(𝑤)|, output 𝑆𝑒𝑙(𝑆! 𝑤 , 𝑘)
• Else if 𝑘 ≤ 𝑆! 𝑤 + 𝑆# 𝑤 , output w
• Else output 𝑆𝑒𝑙(𝑆" 𝑤 , 𝑘 − 𝑆! 𝑤 − 𝑆# 𝑤)

Where $
%
≤ 𝑆! 𝑤 , 𝑆" 𝑤 ≤ &$

%

𝑇 𝑛 = 𝑇
𝑛
3
+ 𝑇

2𝑛
3

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛 log 𝑛)

Asymptotic Running Time?

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

≤
<w

< <<<< < < < < <

O(nlog n) again?
So, what is the point?

Partition into n/5 sets. Sort each set and set 𝑤 = 𝑆𝑒𝑙(𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡𝑠, 𝑛/10)

• 𝑆# 𝑤 ≥ 3 "
!+ = *"

!+

• 𝑆& 𝑤 ≥ 3 "
!+

= *"
!+

𝑇 𝑛 = 𝑇
𝑛
5
+ 𝑇

7𝑛
10

+ 𝑂 𝑛 ⇒ 𝑇 𝑛 = 𝑂(𝑛)

An Improved Idea

< <<<< < < < < <

< 𝒘

> 𝒘

3𝑛
10 ≤ |𝑆! 𝑤 |, 𝑆" 𝑤 ≤

7𝑛
10

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

<
<

An Improved Idea
Sel(S, k) {

𝒏 ← 𝑺
If (n < ??) return ??
Partition S into n/5 sets of size 5
Sort each set of size 5 and let M be the set of medians, so

|M|=n/5
Let w=Sel(M,n/10)
For i=1 to n{

If 𝒙𝒊 < 𝒘 add x to 𝑺" 𝒘
If 𝒙𝒊 > 𝒘 add x to 𝑺# 𝒘
If 𝒙𝒊 = 𝒘 add x to 𝑺$(𝒘)

}
If (𝒌 ≤ |𝑺" 𝒘 |)

return Sel(𝑺" 𝒘 ,𝒌)
else if (𝒌 ≤ 𝑺" 𝒘 + |𝑺$ 𝒘 |)

return w;
else

return Sel(𝑺# 𝒘 ,𝒌 − 𝑺" 𝒘 − |𝑺$(𝒘)|)
}

We can maintain each
set in an array

D&C Summary
Idea:

“Two halves are better than a whole”
• if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
• repeat above, recursively

• Applications: Many.
• Binary Search, Merge Sort, (Quicksort),
• Root of a Function
• Closest points,
• Integer multiplication
• Median
• Matrix Multiplication

Approximation Algorithms

Many of the important problems in real world are NP-
complete.
SAT, Set Cover, Graph Coloring, TSP, Max IND Set,
Vertex Cover, …

So, we cannot find optimum solutions in polynomial time.
What to do instead?

• Find optimum solution of special cases (e.g., random
inputs)

• Find near optimum solution in the worst case

How to deal with NP-complete Problem

Polynomial-time Algorithms with a guaranteed
approximation ratio.

𝛼 =
Cost of computed solution
Cost of the optimum

worst case over all instances.

Goal: For each NP-hard problem find an approximation
algorithm with the best possible approximation ratio.

Approximation Algorithm

Given a graph G=(V,E), Find smallest set of vertices
touching every edge

Vertex Cover

Greedy algorithms are typically used in practice to find a
(good) solution to NP-hard problems

Strategy (1): Iteratively, include a vertex that covers most
new edges

Q:Does this give an optimum solution?
A: No,

Greedy Algorithm?

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy (1): Pick vertex that covers the most

𝐵&𝐵' 𝐵%
𝐵(

Greedy Vertex cover = 20
OPT Vertex cover = 8

Greedy (1): Pick vertex that covers the most

|𝐵)| = 𝑛/𝑖𝐵$ 𝐵'𝐵$*'

𝑛 vertices. Each vertex has one edge into each 𝐵)

Greedy pick bottom vertices = 𝑛 + $
&
+ $

%
+⋯+ 1 ≈ 𝑛 ln 𝑛

OPT pick top vertices = n

Each vertex in 𝐵! has 𝑖 edges to top

Greedy 2: Iteratively, pick both endpoints of an uncovered
edge.

A Different Greedy Rule

Vertex cover = 6

Greedy 2: Pick Both endpoints of an
uncovered edge

𝐵&𝐵' 𝐵%
𝐵(

Greedy vertex cover = 16

OPT vertex cover = 8

Thm: Size of greedy (2) vertex cover is at most twice as big
as size of optimal cover

Pf: Suppose Greedy (2) picks endpoints of edges 𝑒!, … , 𝑒..
Since these edges do not touch, every valid cover must pick
one vertex from each of these edges!

i.e., 𝑂𝑃𝑇 ≥ 𝑘.

But the size of greedy cover is 2k. So, Greedy is a 2-
approximation.

Greedy (2) gives 2-approximation

