CSE 421

Divide and Conquer: Finding Root Closest Pair of Points

Shayan Oveis Gharan
Finding the Closest Pair of Points
A Divide and Conquer Alg

Divide: draw vertical line \(L \) with \(\approx n/2 \) points on each side.

Conquer: find closest pair on each side, recursively.

Combine to find closest pair overall

Return best solutions

seems like \(\Theta(n^2) \)?
Key Observation

Suppose δ is the minimum distance of all pairs in left/right of L.

$$\delta = \min(12, 21) = 12.$$

Key Observation: suffices to consider points within δ of line L. Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Only check pts within 11 in sorted list!
Almost 1D Problem

Partition each side of L into $\frac{\delta}{2} \times \frac{\delta}{2}$ squares.

Claim: No two points lie in the same $\frac{\delta}{2} \times \frac{\delta}{2}$ box.

Pf: Such points would be within

$$\sqrt{\left(\frac{\delta}{2}\right)^2 + \left(\frac{\delta}{2}\right)^2} = \delta \sqrt{\frac{1}{2}} \approx 0.7\delta < \delta$$

Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim: If $|i - j| > 11$, then the distance between s_i and s_j is $> \delta$.

Pf: only 11 boxes within δ of $y(s_i)$.
Recap: Finding Closest Pair

Point 42 has distance at least 2δ from point 30.

At most 11 points ahead of 30 have distance $< \delta$ from it.

So, enough to check distance Distance of 30 to 19...41.
Closest Pair (2Dim Algorithm)

Closest-Pair(p₁, …, pₙ) {
 if(n <= ??) return ??

 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points p[1]…p[m] by y-coordinate.

 for i = 1..m
 for k = 1…11
 if i+k <= m
 δ = min(δ, distance(p[i], p[i+k]));

 return δ.
}
Closest Pair Analysis I

Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$D(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2D\left(\frac{n}{2}\right) + 11n & \text{o.w.} \Rightarrow D(n) = O(n\log n)
\end{cases}$$

BUT, that’s only the number of distance calculations

What if we counted running time?

$$T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + O(n \log n) & \text{o.w.} \Rightarrow D(n) = O(n\log^2 n)
\end{cases}$$
Can we do better? (Analysis II)

Yes!!

Don’t sort by y-coordinates each time.
Sort by x at top level only.
This is enough to divide into two equal subproblems in O(n)
Each recursive call returns δ and list of all points sorted by y
Sort points by y-coordinate by merging two pre-sorted lists.

\[T(n) \leq \begin{cases}
1 & \text{if } n = 1 \\
2T \left(\frac{n}{2} \right) + O(n) & \text{o.w.}
\end{cases} \Rightarrow D(n) = O(n \log n) \]
Integer Arithmetic

Add: Given two n-bit integers a and b, compute $a + b$. $O(n)$ bit operations.

Multiply: Given two n-bit integers a and b, compute $a \times b$. The “grade school” method: $O(n^2)$ bit operations.
How to use Divide and Conquer?

Suppose we want to multiply two 2-digit integers (32,45).
We can do this by multiplying four 1-digit integers
Then, use add/shift to obtain the result:

\[
x = 10x_1 + x_0
\]
\[
y = 10y_1 + y_0
\]
\[
xy = (10x_1 + x_0)(10y_1 + y_0)
\]
\[
= 100x_1y_1 + 10(x_1y_0 + x_0y_1) + x_0y_0
\]

Same idea works when multiplying n-digit integers:
• Divide into 4 n/2-digit integers.
• Recursively multiply
• Then merge solutions
A Divide and Conquer for Integer Mult

Let x, y be two n-bit integers

Write $x = 2^{n/2}x_1 + x_0$ and $y = 2^{n/2}y_1 + y_0$

where x_0, x_1, y_0, y_1 are all $n/2$-bit integers.

Therefore,

$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

So,

$$T(n) = \Theta(n^2).$$

We only need 3 values $x_1y_1, x_0y_0, x_1y_0 + x_0y_1$
Can we find all 3 by only 3 multiplication?
Key Trick: 4 multiplies at the price of 3

\[x = 2^{n/2} \cdot x_1 + x_0 \]
\[y = 2^{n/2} \cdot y_1 + y_0 \]
\[xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) \]
\[= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0 \]

\[\alpha = x_1 + x_0 \]
\[\beta = y_1 + y_0 \]
\[\alpha \beta = (x_1 + x_0)(y_1 + y_0) \]
\[= x_1 y_1 + (x_1 y_0 + x_0 y_1) + x_0 y_0 \]
\[(x_1 y_0 + x_0 y_1) = \alpha \beta - x_1 y_1 - x_0 y_0 \]
Key Trick: 4 multiplies at the price of 3

Theorem [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O(n^{1.585...})$ bit operations.

$x = 2^{n/2} \cdot x_1 + x_0 \Rightarrow \alpha = x_1 + x_0$

$y = 2^{n/2} \cdot y_1 + y_0 \Rightarrow \beta = y_1 + y_0$

$\chi y = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0)$

$= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0$

To multiply two n-bit integers:

Add two n/2 bit integers.

Multiply three n/2-bit integers.

Add, subtract, and shift n/2-bit integers to obtain result.

$T(n) = 3T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O\left(n^{\log_2 3}\right) = O(n^{1.585...})$
Integer Multiplication (Summary)

- Naïve: \(\Theta(n^2) \)

- Karatsuba: \(\Theta(n^{1.585\ldots}) \)

- **Amusing exercise**: generalize Karatsuba to do 5 size \(n/3 \) subproblems
 This gives \(\Theta(n^{1.46\ldots}) \) time algorithm

- Best known algorithm runs in \(\Theta(n \log n) \) using fast Fourier transform
 but mostly unused in practice (unless you need really big numbers - a billion digits of \(\pi \), say)

- Best lower bound \(O(n) \): A fundamental open problem
Master Theorem

Suppose $T(n) = a \cdot T\left(\frac{n}{b}\right) + cn^k$ for all $n > b$. Then,

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- If $a < b^k$ then $T(n) = \Theta(n^k)$
- If $a = b^k$ then $T(n) = \Theta(n^k \log n)$

Works even if it is $\left\lfloor \frac{n}{b} \right\rfloor$ instead of $\frac{n}{b}$.

We also need $a \geq 1, b > 1, k \geq 0$ and $T(n) = O(1)$ for $n \leq b$.
Proving Master Theorem

Problem size
\[T(n) = aT(n/b) + cn^k \]

probs
1

Cost
\[cn^k \]

\[a \]

\[a \]

\[a^2 \]

\[a^d \]

\[c \cdot n^k(a/b^k)^d \]

\[T(n) = c n^k \sum_{i=0}^{d=\log_b n} \left(\frac{a}{b^k} \right)^i \]
A Useful Identity

Theorem: \(1 + x + x^2 + \cdots + x^d = \frac{x^{d+1} - 1}{x-1} \)

Pf: Let \(S = 1 + x + x^2 + \cdots + x^d \)

Then, \(xS = x + x^2 + \cdots + x^{d+1} \)

So, \(xS - S = x^{d+1} - 1 \)

i.e., \(S(x - 1) = x^{d+1} - 1 \)

Therefore,

\[
S = \frac{x^{d+1} - 1}{x - 1}
\]
Solve: $T(n) = aT\left(\frac{n}{b}\right) + cn^k, \ a > b^k$

\[T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k}\right)^i\]

\[= cn^k \frac{\left(\frac{a}{b^k}\right)^{\log_b n+1} - 1}{\left(\frac{a}{b^k}\right) - 1}\]

\[\leq c \left(\frac{n^k}{b^k \log_b n}\right) \frac{\left(\frac{a}{b^k}\right)}{\left(\frac{a}{b^k}\right) - 1} a^{\log_b n}\]

\[\leq 2c a^{\log_b n} = O(n^{\log_b a})\]
Solve: $T(n) = aT\left(\frac{n}{b}\right) + cn^k$, $a = b^k$

\[
T(n) = cn^k \sum_{i=0}^{\log_b n} \left(\frac{a}{b^k} \right)^i \\
= cn^k \log_b n
\]
Master Theorem

Suppose $T(n) = a \, T\left(\frac{n}{b}\right) + cn^k$ for all $n > b$. Then,

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- If $a < b^k$ then $T(n) = \Theta(n^k)$
- If $a = b^k$ then $T(n) = \Theta(n^k \log n)$

Works even if it is $\left\lceil \frac{n}{b} \right\rceil$ instead of $\frac{n}{b}$.

We also need $a \geq 1, b > 1, k \geq 0$ and $T(n) = O(1)$ for $n \leq b$.
Median
Selecting k-th smallest

Problem: Given numbers x_1, \ldots, x_n and an integer $1 \leq k \leq n$
output the k-th smallest number
\[
\text{Sel}({x_1, \ldots, x_n}, k)
\]

A simple algorithm: Sort the numbers in time $O(n \log n)$ then
return the k-th smallest in the array.

Can we do better?

Yes, in time $O(n)$ if $k = 1$ or $k = 2$.

Can we do $O(n)$ for all possible values of k?

Assume all numbers are distinct for simplicity.
An Idea

Choose a number \(w \) from \(x_1, \ldots, x_n \)

Define
\[
\begin{align*}
S_<(w) &= \{ x_i: x_i < w \} \\
S_=(w) &= \{ x_i: x_i = w \} \\
S_>(w) &= \{ x_i: x_i > w \}
\end{align*}
\]

Can be computed in linear time

Solve the problem recursively as follows:
\[
\begin{align*}
\text{If } k &\leq |S_<(w)|, \text{ output } Sel(S_<(w), k) \\
\text{Else if } k &\leq |S_<(w)| + |S_=(w)|, \text{ output } w \\
\text{Else output } Sel(S_>(w), k - |S_<(w)| - |S_=(w)|)
\end{align*}
\]

Ideally want \(|S_<(w)|, |S_>(w)| \leq n/2\). In this case ALG runs in \(O(n) + O\left(\frac{n}{2}\right) + O\left(\frac{n}{4}\right) + \cdots + O(1) = O(n) \).
How to choose w?

Suppose we choose w uniformly at random similar to the pivot in quicksort.

Then, \(\mathbb{E}[|S_<(w)|] = \mathbb{E}[|S_>(w)|] = n/2 \). Algorithm runs in \(O(n) \) in expectation.

Can we get \(O(n) \) running time deterministically?
- Partition numbers into sets of size 3.
- Sort each set (takes \(O(n) \))
- \(w = Sel(midpoints, n/6) \)
How to lower bound $|S_{<}(w)|, |S_{>}(w)|$?

- $|S_{<}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$
- $|S_{>}(w)| \geq 2 \left(\frac{n}{6} \right) = \frac{n}{3}$.

So, what is the running time?
Asymptotic Running Time?

- If $k \leq |S_<(w)|$, output $Sel(S_<(w), k)$
- Else if $k \leq |S_<(w)| + |S_= (w)|$, output w
- Else output $Sel(S_>(w), k - S_<(w) - S_= (w))$

Where $\frac{n}{3} \leq |S_<(w)|, |S_>(w)| \leq \frac{2n}{3}$

$$T(n) = T \left(\frac{n}{3} \right) + T \left(\frac{2n}{3} \right) + O(n) \Rightarrow T(n) = O(n \log n)$$
An Improved Idea

Partition into \(n/5 \) sets. Sort each set and set \(w = Sel(midpoints, n/10) \)

- \(|S_<(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)
- \(|S_>(w)| \geq 3 \left(\frac{n}{10} \right) = \frac{3n}{10} \)

\[
T(n) = T\left(\frac{n}{5} \right) + T\left(\frac{7n}{10} \right) + O(n) \Rightarrow T(n) = O(n)
\]
An Improved Idea

Sel(S, k) {
 n ← |S|
 If (n < ??) return ??
 Partition S into n/5 sets of size 5
 Sort each set of size 5 and let M be the set of medians, so |M|=n/5
 Let w=Sel(M,n/10)
 For i=1 to n{
 If x_i < w add x to S_<w)
 If x_i > w add x to S_>w)
 If x_i = w add x to S_=w)
 }
 If (k ≤ |S_<w)|)
 return Sel(S_<w),k)
 else if (k ≤ |S_<w| + |S_=w|)
 return w;
 else
 return Sel(S>_w),k - |S_<w| - |S_=w|)
}
D&C Summary

Idea:

“Two halves are better than a whole”
 • if the base algorithm has super-linear complexity.
“If a little's good, then more's better”
 • repeat above, recursively

• Applications: Many.
 • Binary Search, Merge Sort, (Quicksort),
 • Root of a Function
 • Closest points,
 • Integer multiplication
 • Median
 • Matrix Multiplication
In-class Exercise

Prove that every amount of postage of 12 cents or more can be formed using just 4-cents and 5-cents stamps.

For example 12=4+4+4.