3

CSE 421: Introduction to Algorithms

Stable Matching

Shayan Oveis Gharan

Administrativia Stuffs

Lectures: M/W/F 10:30-11:20

Zoom Id: KNE 220

Office hours: M/W 11:30-12:20, Allen center 636

T 12:30-1:20 https://washington.zoom.us/j/98253433874

Discussion Board: Use edstem https://edstem.org

Course textbook

Supplementary text 2

TAs

Allen Aby	Mon 1:30-2:20 PM
Robin Yang	Tue 10:30-11:20 AM
Andreea Ghizila	Tue 1:30-2:20 PM
William Nguyen	Tue 2:30-3:20 PM
Motoya Ohnishi	Tue 4:30-5:20 PM
Ashwin Banwari	Wed 4:00-4:50 PM
Jason Waataja	Wed 5:00-5:50
Ivy Wang	Thu 9:30-10:20 AM
Mrigank Arora	Thu 11:30-12:20 AM

Grading

- Weekly HWs, First HW due April 7th
- Submit to Gradescope
- Midterm (05/02/2022), Final (06/07/2022)
 - Exams are open book, open note, no internet access
 - Midterm 50 minutes, Final 110 minutes.
- HW 50%, Midterm 15-20%, Final 30-35%
- Extra Credit problems can boost your final GPA by 0.1

Daily Quizzes

- One quiz before every lecture
- 1-2 questions about the materials of the previous lecture
- Typically yes/no or multiple choice
- Login to canvas (assignment tab) to access the quiz
- Will release questions in the morning before class, you have around 3-4 minutes to answer

- Daily Quizes can boost up your final GPA by 0.1
- If you don't answer any of them you can still get 4.0!

Structure of the course

- First 2-3 lectures overview of proof techniques
 - Proof by Contradiction
 - Induction
 - Take a look at CSE 311 Lectures/assignments for preparation
- Graph Algorithms
- Greedy Algorithms
- Divid & Conquor

Midterm

- Dynamic Programming,
- Network Flow
- Approximation Algorithms and Linear Programming
- Np Completeness

Final

Stable Matching Problem

Given n companies $c_1, ..., c_n$, and n applicants, $a_1, ..., a_n$ find a "stable matching".

- Participants rate members of opposite group.
- Each company lists applicants in order of preference.
- Each applicant lists companies in order of preference.

	favorite	le	ast favorit
	1 ^{s†}	2 nd	3 rd
c_1	a_1	a_2	a_3
c_2	a_2	a_1	a_3
<i>c</i> ₃	a_1	a_2	a_3

	favorite	le	ast favorite
	1 ^{s†}	2 nd	3 rd
a_1	c_2	c_1	<i>c</i> ₃
a_2	c_1	c_2	c_3
a_3	c_1	c_2	c_3

Stable Matching

Perfect matching:

- Each company gets exactly one applicant.
- Each applicant gets exactly one company.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

In a matching M, an unmatched pair a-c is unstable if a and c prefer each other to current partners.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of n companies and n applicants, find a stable matching if one exists.

Example

Question. Is assignment (c_1, a_3) , (c_2, a_2) , (c_3, a_1) stable?

	favorite ↓	least favorite	
	1 ^{s†}	2 nd	3 rd
c_1	a_1	a_2	a_3
c_2	a_2	a_1	a_3
<i>c</i> ₃	a_1	a_2	a_3

	favorite ↓		least favorite ↓	
	1 st	2 nd	3 rd	
a_1	c_2	c_1	c_3	
a_2	c_1	c_2	c_3	
a_3	c_1	c_2	c_3	

Example

Question. Is assignment (c_1, a_3) , (c_2, a_2) , (c_3, a_1) stable? Answer. No. a_2 , c_1 will hook up.

	favorite ↓	least favorite ↓	
	1 st	2 nd	3 rd
c_1	a_1	a_2	a_3
c_2	a_2	a_1	a_3
c_3	a_1	a_2	a_3

	favorite ↓		least favorite ↓	
	1 st	2 nd	3 rd	
a_1	c_2	c_1	<i>c</i> ₃	
a_2	c_1	c_2	c_3	
a_3	c_1	c_2	c_3	

Example

Question: Is assignment (c_1, a_1) , (c_2, a_2) , (c_3, a_3) stable?

Answer: Yes.

	favorite ↓	least favorite	
	1 ^{s†}	2 nd	3 rd
c_1	a_1	a_2	a_3
c_2	a_2	a_1	a_3
c_3	a_1	a_2	a_3

	favorite ↓	least favorite ↓	
	1 st	2 nd	3 rd
a_1	c_2	c_1	c_3
a_2	c_1	c_2	c_3
a_3	c_1	c_2	c_3

Existence of Stable Matchings

Question. Do stable matchings always exist? Answer. Yes, but not obvious a priori.

Stable roommate problem:

2n people; each person ranks others from 1 to 2n-1.
Assign roommate pairs so that no unstable pairs.

	1 st	2 nd	3 rd	
Adam	В	С	D	4 D C D . D C
Bob	С	Α	D	$A-B$, $C-D$ \Rightarrow $B-C$ unstable $A-C$, $B-D$ \Rightarrow $A-B$ unstable
Chris	Α	В	D	A-D, B- $C \Rightarrow A-C$ unstable
David	Α	В	С	

So, Stable matchings do not always exist for stable roommate problem.

12

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each side to be free.
while (some company is free and hasn't proposed to every
applicant) {
    Choose such a c
    a = 1st woman on C's list to whom C has not yet proposed
    if (a is free)
        assign c and a
    else if (a prefers c to her current c')
        assign c and a, and c' to be free
    else
        a rejects c
```

First step: Properties of Algorithm

Observation 1: Companies propose to Applicants in decreasing order of preference.

Observation 2: Each company proposes to each applicant at most once

Observation 3: Once an applicant is matched, she never becomes unmatched; she only "trades up."

What do we need to prove?

- 1) The algorithm ends
 - How many steps does it take?

- 2) The algorithm is correct [usually the harder part]
 - It outputs a perfect matching
 - The output matching is stable

1) Termination / Runtime

Claim. Algorithm terminates after $\leq n^2$ iterations of while loop.

Proof. Observation 2: Each company proposes to each applicant at most once.

Each company makes at most n proposals

So, there are only n^2 possible proposals. \blacksquare

	1 st	2 nd	3 rd	4 th	5 th
Vmware	Α	В	С	D	Ε
Walmart	В	С	D	Α	Е
Xfinity	С	D	Α	В	Е
Yamaha	D	Α	В	С	Е
Zoom	Α	В	С	D	Е

	1 ^{s†}	2 nd	3 rd	4 th	5 th
Amy	W	X	У	Z	V
Brenda	Х	У	Z	V	W
Claire	У	Z	V	W	Х
Diane	Z	V	W	X	У
Erika	V	W	Х	У	Z

2) Correctness: Output is Perfect matching

Claim. All Companies and Applicants get matched.

Proof. (by contradiction)

Suppose, for sake of contradiction, that c_1 is not matched upon termination of algorithm.

Then some applicant, say a_1 , is not matched upon termination.

By Observation 3 (only trading up, never becoming unmatched), a_1 was never proposed to.

But, c_1 proposes to everyone, since it ends up unmatched.

2) Correctness: Stability

Claim. No unstable pairs.

Proof. (by contradiction)

Suppose c, a is an unstable pair: they prefer each other to the partner in Gale-Shapley matching S^* .

```
Case 1: c never proposed to a.

\Rightarrow c prefers its \mathbf{S}^* partner to a.

\Rightarrow c, a is stable.

Obs1: companies propose in

decreasing order of preference
```

Case 2: c proposed to a.

- \Rightarrow a rejected c (right away or later)
- \Rightarrow a prefers her **S*** partner to c.
- \Rightarrow c, a is stable.

Obs3: applicants only trade up

In either case c, a is stable, a contradiction.

Summary

Stable matching problem: Given n companies and n applicants, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?