CSE 421: Introduction to Algorithms

Stable Matching

Shayan Oveis Gharan

Administrativia Stuffs

Lectures: M/W/F 10:30-11:20
Zoom Id: KNE 220

Office hours: M/W 11:30-12:20, Allen center 636
T 12:30-1:20 https://washington.zoom.us/j/98253433874
Discussion Board: Use edstem https://edstem.org

Course textbook

Supplementary text 2

TAs

Allen Aby	Mon 1:30-2:20 PM
Robin Yang	Tue 10:30-11:20 AM
Andreea Ghizila	Tue 1:30-2:20 PM
William Nguyen	Tue 2:30-3:20 PM
Motoya Ohnishi	Tue 4:30-5:20 PM
Ashwin Banwari	Wed 4:00-4:50 PM
Jason Waataja	Wed 5:00-5:50
Ivy Wang	Thu 9:30-10:20 AM
Mrigank Arora	Thu 11:30-12:20 AM

Grading

- Weekly HWs, First HW due April $7^{\text {th }}$
- Submit to Gradescope
- Midterm (05/02/2022), Final (06/07/2022)
- Exams are open book, open note, no internet access
- Midterm 50 minutes, Final 110 minutes.
- HW 50\%, Midterm 15-20\%, Final 30-35\%
- Extra Credit problems can boost your final GPA by 0.1

Daily Quizzes

- One quiz before every lecture
- 1-2 questions about the materials of the previous lecture
- Typically yes/no or multiple choice
- Login to canvas (assignment tab) to access the quiz
- Will release questions in the morning before class, you have around 3-4 minutes to answer
- Daily Quizes can boost up your final GPA by 0.1
- If you don't answer any of them you can still get 4.0!

Structure of the course

- First 2-3 lectures overview of proof techniques
- Proof by Contradiction
- Induction
- Take a look at CSE 311 Lectures/assignments for preparation
- Graph Algorithms
- Greedy Algorithms
- Divid \& Conquor

Midterm

- Dynamic Programming,
- Network Flow
- Approximation Algorithms and Linear Programming
- Np Completeness

Final

Stable Matching Problem

Given n companies c_{1}, \ldots, c_{n}, and n applicants, a_{1}, \ldots, a_{n}
find a "stable matching".

- Participants rate members of opposite group.
- Each company lists applicants in order of preference.
- Each applicant lists companies in order of preference.

	favorite	least favorite	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
c_{1}	a_{1}	a_{2}	a_{3}
c_{2}	a_{2}	a_{1}	a_{3}
c_{3}	a_{1}	a_{2}	a_{3}

	favorite	least favorite	
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
a_{1}	c_{2}	c_{1}	c_{3}
a_{2}	c_{1}	c_{2}	c_{3}
a_{3}	c_{1}	c_{2}	c_{3}

Stable Matching

Perfect matching:

- Each company gets exactly one applicant.
- Each applicant gets exactly one company.

Stability: no incentive for some pair of participants to undermine assignment by joint action.

In a matching M , an unmatched pair a-c is unstable if a and c prefer each other to current partners.

Stable matching: perfect matching with no unstable pairs.
Stable matching problem: Given the preference lists of n companies and n applicants, find a stable matching if one exists.

Example

Question. Is assignment $\left(c_{1}, a_{3}\right),\left(c_{2}, a_{2}\right),\left(c_{3}, a_{1}\right)$ stable?

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
C_{1}	a_{1}	a_{2}	a_{3}
C_{2}	a_{2}	a_{1}	a_{3}
C_{3}	a_{1}	a_{2}	a_{3}

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
a_{1}	c_{2}	c_{1}	c_{3}
a_{2}	c_{1}	c_{2}	c_{3}
a_{3}	c_{1}	c_{2}	c_{3}

Example

Question. Is assignment $\left(c_{1}, a_{3}\right),\left(c_{2}, a_{2}\right),\left(c_{3}, a_{1}\right)$ stable? Answer. No. a_{2}, c_{1} will hook up.

	favorite \downarrow		least favorite
	$1^{\text {st }}$	$2 n d$	
c_{1}	a_{1}	a_{2}	a_{3}
c_{2}	a_{2}	a_{1}	a_{3}
c_{3}	a_{1}	a_{2}	a_{3}

	favorite		least favorite
	1 1st	$2{ }^{\text {nd }}$	$3{ }^{\text {rd }}$
a_{1}	c_{2}	c_{1}	c_{3}
a_{2}	c_{1}	c_{2}	c_{3}
a_{3}	c_{1}	c_{2}	c_{3}

Example

Question: Is assignment $\left(c_{1}, a_{1}\right),\left(c_{2}, a_{2}\right),\left(c_{3}, a_{3}\right)$ stable? Answer: Yes.

	favorite		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	3 rd
C_{1}	a_{1}	a_{2}	a_{3}
C_{2}	a_{2}	a_{1}	a_{3}
C_{3}	a_{1}	a_{2}	a_{3}

	favorite \downarrow		least favorite \downarrow
	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
a_{1}	c_{2}	c_{1}	c_{3}
a_{2}	c_{1}	c_{2}	c_{3}
a_{3}	c_{1}	c_{2}	c_{3}

Existence of Stable Matchings

Question. Do stable matchings always exist?
Answer. Yes, but not obvious a priori.
Stable roommate problem:
2 n people; each person ranks others from 1 to $2 \mathrm{n}-1$.
Assign roommate pairs so that no unstable pairs.

	$1{ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$A-B, C-D \Rightarrow B-C$ unstable $A-C, B-D \Rightarrow A-B$ unstable $A-D, B-C \Rightarrow A-C$ unstable
Adam	B	C	D	
Bob	C	A	D	
Chris	A	B	D	
David	A	B	C	

So, Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm [Gale-Shapley'62]

```
Initialize each side to be free.
while (some company is free and hasn't proposed to every
applicant) {
    Choose such a c
    a = 1 'st woman on c's list to whom c has not yet proposed
    if (a is free)
    assign c and a
    else if (a prefers c to her current c')
        assign c and a, and c' to be free
    else
    a rejects c
}
```


First step: Properties of Algorithm

Observation 1: Companies propose to Applicants in decreasing order of preference.

Observation 2: Each company proposes to each applicant at most once

Observation 3: Once an applicant is matched, she never becomes unmatched; she only "trades up."

What do we need to prove?

1) The algorithm ends

- How many steps does it take?

2) The algorithm is correct [usually the harder part]

- It outputs a perfect matching
- The output matching is stable

1) Termination / Runtime

Claim. Algorithm terminates after $\leq \boldsymbol{n}^{2}$ iterations of while loop. Proof. Observation 2: Each company proposes to each applicant at most once.
Each company makes at most n proposals So, there are only n^{2} possible proposals. -

	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
Vmware	A	B	C	D	E
Walmart	B	C	D	A	E
Xfinity	C	D	A	B	E
Yamaha	D	A	B	C	E
Zoom	A	B	C	D	E

$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	
Amy	W	X	y	Z	V
Brenda	X	Y	Z	V	W
Claire	Y	Z	V	W	X
Diane	Z	V	W	X	y
Erika	V	W	X	y	Z

$n(n-1)+1$ proposals required

2) Correctness: Output is Perfect matching

Claim. All Companies and Applicants get matched.
Proof. (by contradiction)
Suppose, for sake of contradiction, that c_{1} is not matched upon termination of algorithm.
Then some applicant, say a_{1}, is not matched upon termination.
By Observation 3 (only trading up, never becoming unmatched), a_{1} was never proposed to.
But, c_{1} proposes to everyone, since it ends up unmatched.

2) Correctness: Stability

Claim. No unstable pairs.
Proof. (by contradiction)
Suppose c, a is an unstable pair: they prefer each other to the partner in Gale-Shapley matching S*.

Obs1: companies propose in
Case 1: c never proposed to a. $\Rightarrow c$ prefers its \mathbf{S}^{*} partner to a.
$\Rightarrow c, a$ is stable.
Case 2: c proposed to a.
$\Rightarrow a$ rejected c (right away or later)
$\Rightarrow a$ prefers her \mathbf{S}^{*} partner to c.
$\Rightarrow c, a$ is stable.
In either case c, a is stable, a contradiction.

Summary

Stable matching problem: Given n companies and n applicants, and their preferences, find a stable matching if one exists.

- Gale-Shapley algorithm: Guarantees to find a stable matching for any problem instance.
- Q: How to implement GS algorithm efficiently?
- Q: If there are multiple stable matchings, which one does GS find?
- Q: How many stable matchings are there?

