CSE421: Design and Analysis of Algorithms

Homework 8

Shayan Oveis Gharan
Due: June 3rd, 2022 at 23:59 PM

P1) (20 points) Write an Integer Program for the weighted set cover problem. We are given m subsets of the ground set of elements $[n]=\{1, \ldots, n\}$, namely $S_{1}, S_{2}, \ldots, S_{m}$. The cost of choosing S_{i} is c_{i}. We want to choose the smallest cost of these sets to cover $[n]$. Note that the cost of choose $S_{i_{1}}, \ldots, S_{i_{k}}$ is $c_{i_{1}}+\cdots+c_{i_{k}}$. Prove that its optimum solution is equal to the optimum of the weighted set cover. Then, turn it into a LP relaxation for the weighted set cover.

P2) (20 points) Translate the following LP into the standard form. Then write its dual.

$$
\begin{array}{ll}
\min & 3 x_{1}-x_{2} \\
\text { s.t., } & x_{1}+x_{2}+x_{3}=1 \\
& 2 x_{1}-x_{3} \geq x_{2}-2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

No proof is needed.
P3) You want to solve the following linear classification problem using linear programs. You are given n red points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ and n blue points $\left(x_{1}^{\prime}, y_{1}^{\prime}\right), \ldots,\left(x_{n}^{\prime}, y_{n}^{\prime}\right)$. You want to find a half-plane that separates the red from the blue such that the sum the errors is minimized. Namely, for a vector $a=\binom{a_{1}}{a_{2}} \in \mathbb{R}^{2}$ and $b \in \mathbb{R}$ we define the error of each a point (x, y) as $\max \left\{a_{1} x+a_{2} y-b, 0\right\}$ and the error of a blue point $\left(x^{\prime}, y^{\prime}\right)$ is $\max \left\{b-a_{1} x^{\prime}-a_{2} y^{\prime}, 0\right\}$. Write a linear program to find a_{1}, a_{2}, b such that the sum of errors over all points is minimized. No proof is needed for this problem.

P4) 4-Color problem is defined as follows: Given a graph $G=(V, E)$, can we color vertices of G with 4 colors such that any two neighbors get distinct colors?
5 -Color problem is defined as follows: Given a graph $G=(V, E)$, can we color vertices of G with 5 colors such that any two neighbors get distinct colors?

Prove that 4 -Color $\leq_{P} 5$-Color.
P5) Extra Credit: Prove that the Hamiltonian cycle problem in directed graphs is NP-Complete. You may use the fact that 3SAT is NP-Complete.

