CSE421: Design and Analysis of Algorithms

Homework 6

Shayan Oveis Gharan
Due: May 19, 2022 at 23:59 PM

P1) Given a DAG with n vertices and m edges and a pair of vertices s, t. Design a polynomial time algorithm to output the number of directed paths from s to t in G. For example, given s, t in the following graph you should output 3 .

P2) A country has $2 n$ cities; n of them are on a line north of the river with x-coordinates a_{1}, \ldots, a_{n} and n of them are on a line south of the river with x-coordinates b_{1}, \ldots, b_{n}. You can assume no two cities in the north have the same coordinates and no two in the south have the same coordinates. We want to make maximum number of bridges between north and south. A bridge is a direct line connecting the i-th city in the north to the i-th city in the south, i.e., a_{i} to b_{i}. Design a polynomial time algorithm that outputs the maximum number of bridges we can build such that no two bridges cross each other. For example if $a_{1}=5, a_{2}=2, a_{3}=4$ and $b_{1}=1, b_{2}=4, b_{3}=2$ then, the maximum number of bridges is 1 .

P3) Every employee of Apple Inc (except the CEO) has a unique manager (so a manager also has a unique manager etc). Furthermore, you can assume that there is no cycle in the managerial relations, i.e., we cannot have k employees a_{1}, \ldots, a_{k} such that a_{i} is the manager of a_{i-1} and a_{1} is the manager of a_{k}. We want to throw a party and invite a set of employees with the restriction that if we invite an employee we cannot invite his/her manager. Every employee i has a value v_{i} if it gets invited to the party. Design an algorithm that reads employees' values (including the CEO) and their managerial relations and outputs the sum of the values of the most valuable set of employees to be invited to the party. Your algorithm should run in time polynomial in n.
For example, say 1 is manager of 2,3 and 2 is the manger of 4 and 3 is the manager of 5 . Furthermore, assume $v_{1}=3, v_{2}=2, v_{3}=2, v_{4}=1, v_{5}=1$. Then you should output 5 corresponding to invite $1,4,5$ to the party.

P4) Given a directed graph G such that every edge $e=(u, v)$ sends a packet from u to v with probability $0<p_{e}<1$. Design a polynomial time algorithm that given a pair of vertices s, t finds the path from s to t that has the largest probability of success. You just need to output the probability that a packet from s is successfully sent to t along that path. For example, in the following graph the best path from s to t is s, a, b, t and you should output 0.144.

P5) Extra Credit: Given a sequence of positive numbers x_{1}, \ldots, x_{n} and an integer k, design a polynomial time algorithm that outputs

$$
\sum_{S \in\binom{n}{k}} \prod_{i \in S} x_{i}
$$

where the sum is over all subsets of size k.

