CSE421: Design and Analysis of Algorithms

Homework 4

Shayan Oveis Gharan
Due: April 29th, 2021 at 23:59 PM

P1) (20 points) We have n individuals in a party some pairs are friends. Suppose friendship is a two-way relation, i.e., if i is a friend of j then j is a friend of i. Given an integer k design a polynomial time algorithm that outputs the largest subset S of these individuals such that each person in S has at least k friends in S. For example suppose $n=4$ and we have the following friendships: $1 \leftrightarrow 2,1 \leftrightarrow 3,2 \leftrightarrow 3,1 \leftrightarrow 4$ and $k=2$. Then you should output $S=\{1,2,3\}$.

P2) Given a connected undirected weighted graph $G=(V, E)$ with positive weights on the edges, i.e., $c_{e}>0$ for all e. Design a polynomial time algorithm to find the largest weight set of edges $F \subseteq E$ such that if we delete all edges of F the remaining graph is still connected. For simplicity assume that for any two edges $e, f \in E, c_{e} \neq c_{f}$. For example in the following example the optimum set F is $F=\{(a, c),(c, d)\}$.

P3) (10 points) Suppose you are choosing between the following three algorithms:
a) Algorithm A solves the problem by dividing it into seven subproblems of half the size, recursively solves each subproblem, and then combines the solution in linear time.
b) Algorithm B solves the problem by dividing it into twenty five subproblems of one fifth the size, recursively solves each subproblem, and then combines the solutions in quadratic time.
c) Algorithm C solves problems of size n by recursively solving four subproblems of size $n-4$, and then combines the solution in constant time.

In all cases you can assume it takes $O(1)$ time to solve instances of size 1 . What are the running times of each of these algorithms? To receive full credit, it is enough to write down the running time.

P4) (20 points) Given a sequence of n numbers a_{1}, \ldots, a_{n}, we say this sequence is special if there is an integer $1 \leq m \leq n$ such that

- For all $1 \leq i<m, a_{i}<a_{i+1}$, and
- For all $m \leq i<n, a_{i}>a_{i+1}$.

For example, $1,4,3,2$ is special. Given a special sequence of n numbers stored in an array $A[i]=a_{i}$, design an $O(\log n)$ time algorithm that outputs the largest number in this array, i.e., $A[m]=a_{m}$.

P5) Extra Credit The spanning tree game is a 2-player game. Each player in turn selects an edge. Player 1 starts by deleting an edge, and then player 2 fixes an edge (which has not been deleted yet); an edge fixed cannot be deleted later on by the other player. Player 2 wins if he succeeds in constructing a spanning tree of the graph; otherwise, player 1 wins.
The question is which graphs admit a winning strategy for player 1 (no matter what the other player does), and which admit a winning strategy for player 2 .
Show that player 1 has a winning strategy if and only if G does not have two edge-disjoint spanning trees. Otherwise, player 2 has a winning strategy.

