CSE421: Design and Analysis of Algorithms

Homework 2

Shayan Oveis Gharan

P1) (20 points) Let $G=(V, E)$ a be an undirected graph. For a set $S \subset V$, write $E(S, \bar{S})$ to denote the set of edges with exactly one endpoint in S and one endpoint in \bar{S}. Suppose that $|E(S, \bar{S})|$ is odd for some $S \subset V$. Prove that G has an odd degree vertex. For example, in the above picture, $S=\{1,2,3\}, \bar{S}=\{4,5\}$ and $E(S, \bar{S})$ has only the edge (2,4) so it is odd. The graph has an odd degree vertex, e.g., vertex 2 .

P2) (20 points) Let G be a tree. Use induction to prove that we can color vertices of G with 2 colors such that the endpoints of every edge have opposite colors. For example, in the following picture we give a coloring of the given tree with black and white.

P3) (20 points) Given a connected undirected graph $G=(V, E)$ with $n=|V|$ vertices and $m=|E|$ edges, design an $O(m+n)$-time algorithm to find a vertex in G whose removal does not disconnect G. Note that as a consequence this algorithm shows that every connected graph contains such a vertex.

P4) (20 points) Given a weighted connected graph $G=(V, E)$ with $m=|E|$ edges and $n=|V|$ vertices where every edge $e \in E$ has a weight $w_{e} \in\{1,2\}$ and a vertex $s \in V$. For a path $s=v_{0}, v_{1}, \ldots, v_{k}=t$ from s to a vertex t define its weight to be $w_{\left(v_{0}, v_{1}\right)} \cdot w_{\left(v_{1}, v_{2}\right)} \ldots w_{\left(v_{k-1}, v_{k}\right)}$, i.e., instead of taking the sum of weights we take their product. Design an $O(m+n)$ time algorithm to output the length of the shortest path from s to all vertices of G. You will receive partial credit if your algorithm runs in polynomial time (as opposed to $O(m+n)$). For example, in the above picture the length of the shortest path from s to b is 1 and the length of the shortest paths from s to each of a and c is 2 .

P5) Extra Credit: Prove that we can color the edges of every graph G with two colors (red and blue) such that, for every vertex v, the number of red edges touching v and the number of blue edges touching v differ by at most 2 .

