CSE421: Design and Analysis of Algorithms

Homework 1

Shayan Oveis Gharan
Due: April 7th, 2021 at 11:59 PM

Please see https://courses.cs.washington.edu/courses/cse421/22sp/grading.html for general guidelines about Homework problems.

Most of the problems only require one or two key ideas for their solution. It will help you a lot to spell out these main ideas so that you can get most of the credit for a problem even if you err on the finer details. Please justify all answers.

P1) Construct an instance of the stable matching problem with 4 companies c_{1}, \ldots, c_{4} and 4 applicants a_{1}, \ldots, a_{4} with two stable matchings M_{1}, M_{2} such that

- c_{1} prefers its partner in M_{1} to its partner in M_{2}.
- c_{2} prefers its partner in M_{2} to its partner in M_{1}.

Note that c_{1} (and similarly c_{2}) must have different partners in M_{1}, M_{2}. You don't need to write a proof for this part. Just writing the instance and stable matchings M_{1}, M_{2} suffices.

P2) Prove that in the output of the Gale-Shapley algorithm (when applicants propose) at most one applicant gets its last choice.

P3) a) Suppose we have $n \geq 1$ positive real numbers x_{1}, \ldots, x_{n} such that $x_{1} x_{2} \ldots x_{n}=1$. Show that for some i we must have $x_{i} \leq 1$ and for some j we must have $x_{j} \geq 1$.
b) Use induction to prove that for any n positive real numbers x_{1}, \ldots, x_{n} such that $x_{1} \ldots x_{n}=1$ we have

$$
\left(1+x_{1}\right) \ldots\left(1+x_{n}\right) \geq 2^{n} .
$$

P4) Arrange the following in increasing order of asymptotic growth rate. For full credit it is enough to just give the order. All logs are in base 2 .
(a) $f_{1}(n)=\frac{n}{2 \sqrt{\log \log n}}$
(b) $f_{2}(n)=\frac{n(\log \log n)^{99}}{(\log n)^{101}}$
(c) $f_{3}(n)=n!^{2}$
(d) $f_{4}(n)=\left(3^{2}\right)^{\log n}$
(e) $f_{5}(n)=n^{n \log ^{2} n}$
(f) $f_{6}(n)=2^{2 \sqrt{\log n}}$
(g) $f_{7}(n)=2^{\log ^{1 / 3} n}$
(h) $f_{8}(n)=2^{\frac{\log n}{\log \log n}}$
(i) $f_{9}(n)=2^{\left(4^{\log n}\right)}$
(j) $f_{10}(n)=2^{\log n+\log \log n}$

P5) Let $G=(V, E)$ a be an undirected graph. For a set $S \subset V$, write $E(S, \bar{S})$ to denote the set of edges with exactly one endpoint in S and one endpoint in \bar{S}. Suppose that $|E(S, \bar{S})|$ is odd for some $S \subset V$. Prove that G has an odd degree vertex. For example, in the above picture, $S=\{1,2,3\}, \bar{S}=\{4,5\}$ and $E(S, \bar{S})$ has only the edge $(2,4)$ so it is odd. The graph has an odd degree vertex, e.g., vertex 2 .

P6) Extra Credit: Design a polynomial time algorithm that outputs a 100 stable matchings of a given instance with n companies and n applicants. If the instance does not have 100 stable matchings output "Impossible".

