CSE421: Design and Analysis of Algorith	Ams March 29th, 2022
Homework 1	
Shayan Oveis Gharan	Due: April 7th, 2021 at 11:59 PM

Please see https://courses.cs.washington.edu/courses/cse421/22sp/grading.html for general guide-lines about Homework problems.

Most of the problems only require one or two key ideas for their solution. It will help you a lot to spell out these main ideas so that you can get most of the credit for a problem even if you err on the finer details. Please justify all answers.

- P1) Construct an instance of the stable matching problem with 4 companies c_1, \ldots, c_4 and 4 applicants a_1, \ldots, a_4 with two stable matchings M_1, M_2 such that
 - c_1 prefers its partner in M_1 to its partner in M_2 .
 - c_2 prefers its partner in M_2 to its partner in M_1 .

Note that c_1 (and similarly c_2) must have different partners in M_1, M_2 . You don't need to write a proof for this part. Just writing the instance and stable matchings M_1, M_2 suffices.

- P2) Prove that in the output of the Gale-Shapley algorithm (when applicants propose) at most one applicant gets its last choice.
- P3) a) Suppose we have $n \ge 1$ positive real numbers x_1, \ldots, x_n such that $x_1 x_2 \ldots x_n = 1$. Show that for some *i* we must have $x_i \le 1$ and for some *j* we must have $x_i \ge 1$.
 - b) Use induction to prove that for any *n* positive real numbers x_1, \ldots, x_n such that $x_1 \ldots x_n = 1$ we have

$$(1+x_1)\dots(1+x_n) \ge 2^n.$$

- P4) Arrange the following in increasing order of asymptotic growth rate. For full credit it is enough to just give the order. All logs are in base 2.
 - (a) $f_1(n) = \frac{n}{2^{\sqrt{\log \log n}}}$ (b) $f_2(n) = \frac{n(\log \log n)^{99}}{(\log n)^{101}}$ (c) $f_3(n) = n!^2$ (d) $f_4(n) = (3^2)^{\log n}$ (e) $f_5(n) = n^{n \log^2 n}$ (f) $f_6(n) = 2^{2\sqrt{\log n}}$ (g) $f_7(n) = 2^{\log^{1/3} n}$ (h) $f_8(n) = 2^{\frac{\log n}{\log \log n}}$ (i) $f_9(n) = 2^{(4^{\log n})}$
 - (j) $f_{10}(n) = 2^{\log n + \log \log n}$

P5) Let G = (V, E) a be an undirected graph. For a set $S \subset V$, write $E(S, \overline{S})$ to denote the set of edges with exactly one endpoint in S and one endpoint in \overline{S} . Suppose that $|E(S, \overline{S})|$ is odd for some $S \subset V$. Prove that G has an odd degree vertex. For example, in the above picture, $S = \{1, 2, 3\}, \overline{S} = \{4, 5\}$ and $E(S, \overline{S})$ has only the edge (2, 4) so it is odd. The graph has an odd degree vertex, e.g., vertex 2.

P6) Extra Credit: Design a polynomial time algorithm that outputs a 100 stable matchings of a given instance with n companies and n applicants. If the instance does not have 100 stable matchings output "Impossible".