
Section 8: P, NP, and Reductions

1. A Fun Reduction

Define 5-SAT as the following problem:

Input: An expression in CNF form, where every term has exactly 5 literals. Output: true if there is a variable
setting which makes the whole expression true, false otherwise.

Prove that 5-SAT is NP-complete.

1.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand 5-SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

1.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

1.3. Write The Proof

(a) to be NP-Complete, you 5-SAT needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

2. A Tricky Reduction

Define IND-SET as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an independent set in G of size k (or more), false otherwise.

And 3-SAT as in class
Input: expression in CNF form, where every term has exactly 5 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

Prove that IND-SET is NP-complete using 3-SAT.

1



2.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand IND-SET and 3-SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

2.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

2.3. Write The Proof

(a) to be NP-Complete, IND-SET needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

3. Reduce to decision

NP is a set of decision (yes/no) problems, but in practice we’re often interested in optimization problems (instead
of “is there a vertex cover of size k?” we usually want to “find the smallest vertex cover”). Usually, this isn’t a
problem, though; we’ll see an example in this problem.

Let VCD be the problem: Given a graph G and an integer k, return true if and only if G has a vertex cover of size k.
Let VCO be the problem: Given a graphG, return a list containing the vertices in a minimum size vertex cover.

(a) Show that VCO ≤P VCD (this is the easy direction).

(b) We’ll now start working on the other reduction. Imagine someone came to you and said “See this vertex u, I
promise it is in the minimum vertex cover.” Use this promise to solve VCO on a graph of size n− 1 instead of
n.

(c) Now imagine the same person said “See this vertex v, I promise it is not in the minimum vertex cover.” Use
this promise to solve VCO on a graph of size n− 1 instead of n.

(d) Use the ideas from the last two parts to show VCD ≤P VCO.

4. Another Reduction

Consider an undirected graphG, where each vertex has a non-negative integer number of pebbles. A single pebbling
move consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex, where we can
choose which adjacent vertex. A pebbling move can only be done on a vertex that already has at least two pebbles,

2



and it will always decrease the total number of pebbles in the graph by exactly one. Our goal is to remove as many
pebbles as we can. Observe that at best, we’ll have at least one pebble remaining in the graph.

Let the PEBBLE problem be, given an undirected graph, and the number of pebbles at each vertex, is there a sequence
of pebbling moves that leaves exactly one pebble in the graph?

Define the Hamiltonian Path Problem as the following problem:

Input: An undirected graph.

Output: true if there exists a path in the graph visiting every vertex exactly once, false otherwise.

Given that the Hamiltonian Path Problem is NP-complete, show that PEBBLE is as well. You may assume that the
total number of pebbles in a graph is polynomial in terms of the size of the graph.

Hint: A single pebbling move can be represented as an ordered pair of vertices (u, v) where we take two pebbles
from u and place one pebble in its neighbor v. A sequence of pebbling moves can be represented by a sequence of
these pairs. Is there any way we can order these pairs nicely?

4.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand PEBBLE and the Hamiltonian Path Problem.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

4.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

4.3. Write The Proof

(a) to be NP-Complete, PEBBLE needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

3


	1 A Fun Reduction
	1.1 Read and Understand the Problem
	1.2 Design the Reduction
	1.3 Write The Proof

	2 A Tricky Reduction
	2.1 Read and Understand the Problem
	2.2 Design the Reduction
	2.3 Write The Proof

	3 Reduce to decision
	4 Another Reduction
	4.1 Read and Understand the Problem
	4.2 Design the Reduction
	4.3 Write The Proof


