
Section 8: Solutions

1. A Fun Reduction

Define 5-SAT as the following problem:

Input: An expression in CNF form, where every term has exactly 5 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

Prove that 5-SAT is NP-complete.

1.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand 5-SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

For 5-SAT

• input: an expression in CNF form of n Boolean variables where each clause has 5 literals

• output: true or false (depending on if we have a variable setting which makes the whole expression true)

• CNF form is AND of ORs like (za ∨ zb ∨ zi) ∧ (zc ∨ zi ∨ zj) ∧ ..., literals zi are boolean variables or the
negation of boolean variables xi or ¬xi

You’re going to design a reduction – what will that reduction look like?

• Which problem are you solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

For the reduction

• We want to show that 5-SAT is NP-complete, so we need to reduce an NP-complete problem to 5-SAT in
polynomial time. We can assume we have an algorithm for 5-SAT. A good NP-complete problem to use is
3-SAT, so let’s try to solve it using 5-SAT. In other words, we want to show that 3-SAT ≤ 5-SAT

• output of the reduction: a boolean which is the answer to the 3-SAT (which we get by calling 5-SAT like a
library function)

1.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”
(the thing that makes it a YES instance), and transform from one type of certificate to the other. Solution:

Let x1, . . . xn be the variables in the 3-SAT instance and C1, C2, . . . , Cm be the clauses.

1



Create two dummy variables d1, d2. For each clause Ci, create four clauses: C1 ∨ d1 ∨ d2
C1 ∨ ¬d1 ∨ d2
C1 ∨ d1 ∨ ¬d2
C1 ∨ ¬d1 ∨ ¬d2
Our 5-SAT instance is: xn . . . , xn, d1, d2
The 4m clauses described above.

1.3. Write The Proof

(a) to be NP-Complete, 5-SAT needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

Solution:

A verifier would take in the settings of the variables to true and false. Given a setting, a verifier would
check that each clause (i.e., each constraint) is satisfied. This will take time linear in the length of the
constraints, so it is polynomial time.

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

Solution:

Running Time: Our algorithm makes 4 copies of every clause and adds a constant length set of literals to
each clause, so the running time to create the instance is polynomial (and we call the library only once,
which is also at most polynomial).

Correctness
Let φ3 be our 3-SAT instance and φ5 be our 5-SAT instance.

Suppose φ3 is satisfiable, we show that our reduction returns true. Since φ3 is satisfiable, there is a setting
of the variables which causes φ3 to be true. Take that setting, and set d1, d2 arbitrarily. Every clause of φ5

is a clause of φ3 with extra literals ORed on, so since each clause of φ3 is true, each clause of φ5 is as well,
and this is a satisfying assignment.

Conversely, suppose that our reduction returns true, and therefore φ5 was satisfiable. Consider a satisfying
assignment for φ5. We claim that (ignoring d1, d2) the same assignment satisfies φ3. Consider an arbitrary
clause Ci of φ3. In φ5 there were four clauses built from Ci (each ORed with all combinations of literals
of d1, d2. One of the created clauses in φ5 had both inserted literals involving d1, d2 being false (since we
included all possible combinations). Since φ5 was satisfied, this clause evaluated to true, which means that
Ci evaluated to true. Since Ci was arbitrary, we have that every clause is true, and therefore a satisfying
assignment for φ3, as required.

2. A Tricky Reduction

Define IND-SET as follows:
Input: An undirected graph G and a positive integer k
Output: true if there is an independent set in G of size k (or more), false otherwise.

And 3-SAT as in class
Input: expression in CNF form, where every term has exactly 3 literals.
Output: true if there is a variable setting which makes the whole expression true, false otherwise.

Prove that IND-SET is NP-complete using 3-SAT.

2



2.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand IND-SET and 3-SAT.

• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

For IND-SET

• input: a graph

• output: true or false

• An independent set is a set of vertices so that G has no edges between any pair in the set.

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

For the reduction

• We want to show that 3-SAT ≤ IND-SET. Assume we have an algorithm for IND-SET. We’re trying to solve
3-SAT.

• output of the reduction: a boolean which is the answer to the 3-SAT (which we get by calling IND-SET like
a library function)

2.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

Solution:

The key idea is to think about solving 3-SAT as picking a literal from each clause and finding a truth assignment
to make all of them true (where none of the literals we pick are in conflict, like xi and ¬xi). We want the
independent set that IND-SET finds to correspond to those literals that make each clause true.

Let x1, . . . xn be the variables in the 3-SAT instance and C1, C2, . . . , Cm be the clauses.

Let G be the graph we construct to input into IND-SET. Add one vertex to G for each literal in a clause. For each
clause, connect the 3 literals to form a triangle. IND-SET will pick at most one vertex from each clause, which
will be set to true. To ensure that no conflicting literals are picked, connect all pairs of vertices that correspond
to complementary literals. Let k be the number of clauses m.

Our IND-SET instance is: The graph G described above.

2.3. Write The Proof

(a) to be NP-Complete, IND-SET needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

Solution:

3



A verifier would take in the subset of k vertices that are independent. Given this set of vertices, a verifier
would check that these vertices are actually independent (i.e. they are not adjacent). This will take time
O(E + V ), so it is polynomial time.

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

Solution:

Running Time: Our algorithm adds every clause to the graph, adds edges for the 3 literals in each clause,
and adds edges connecting complementary literals, so the running time to create the instance is polynomial
(and we call the library only once, which is also at most polynomial).

Correctness
Let φ3 be our 3-SAT instance and G be our IND-SET instance.

Suppose φ3 is satisfiable, we show that our reduction returns true. Since φ3 is satisfiable, there is a setting
of the variables which causes φ3 to be true. Take that setting, it gives us that at least one literal in every
constraint is true, and no conflicting literals are both true. To get the assignment that satisfies G, for each
constraint, choose one of the true literals, and add the corresponding vertex to the independent set. This
gives an independent set of the required size.

Conversely, suppose that our reduction returns true, and therefore φ3 was satisfiable. Suppose there is an
independent set of at least the size of the number of constraints. Because of the “in-constraint” edges in
G, an independent set has at most one per constraint. Thus every constraint has exactly one vertex in the
independent set. The variables of the φ3 match to the chosen literals. No set literals could be conflicting
because of the edges in G connecting corresponding literals, and we satisfy every constraint because we
chose a good setting of one piece with the independent set. Therefore we have a satisfying assignment of
φ3!

3. Reduce to decision

NP is a set of decision (yes/no) problems, but in practice we’re often interested in optimization problems (instead
of “is there a vertex cover of size k?” we usually want to “find the smallest vertex cover”). Usually, this isn’t a
problem, though; we’ll see an example in this problem.

Let VCD be the problem: Given a graph G and an integer k, return true if and only if G has a vertex cover of size k.
Let VCO be the problem: Given a graphG, return a list containing the vertices in a minimum size vertex cover.

(a) Show that VCD ≤P VCO (this is the easy direction). Solution:

On input G, k (for k ≤ n) for VCD, run the library for VCO on input G. Count the number of vertices in the
output. If it is k or less, return true, otherwise return false.

If there is a vertex cover of size at most k, then there is a vertex cover of size k (just add vertices until
you hit k). If there is not a vertex cover of size at most k, then the minimum one is larger, and so the VCD
algorithm will give a longer list, and the reduction will return false, as required.

(b) We’ll now start working on the other reduction. Imagine someone came to you and said “See this vertex u, I
promise it is in the minimum vertex cover.” Use this promise to solve VCO on a graph of size n− 1 instead of
n. Solution:

If u is in the minimum vertex cover, then delete u and all edges incident to u from the graph G. Call the
resulting graph G− u. Call the VCO library on G− u. Return u along with the result of the library call.

4



Let S be a vertex cover ofG−u. Observe that adding u gives a vertex cover ofG, as every edge not incident
to u was covered in G− u, and u was added to the vertex cover to cover all remaining edges. Moreover,
we find a minimum vertex cover; We know that u is in a minimum vertex cover and removing u from any
vertex cover for G gives a cover of G− u; a smaller cover of G including u would give us a smaller cover
for G− u, but we called the VCO library which gives us the minimum.

(c) Now imagine the same person said “See this vertex v, I promise it is not in the minimum vertex cover.” Use
this promise to solve VCO on a graph of size n− 1 instead of n. Solution:

If v is not in the vertex cover, then all neighbors w of v must be in the cover (otherwise, we would not
cover the edge (v, w)).

(d) Use the ideas from the last two parts to show VCO ≤P VCD. Solution:

1: function MinVertexCover(G)
2: Call VCD library for all values of k until you find the size of the min vertex cover of G.
3: Pick an arbitrary vertex u.
4: if VCD library says YES on G− u, k − 1 then
5: return {u} ∪ MinVertexCover(G− u)
6: elsereturn N(u) ∪ MinVertexCover(G− u−N(u)) . N(u) is the neighbors of u

We will skip the proof of correctness, as it is mostly combining the prior parts.

For efficiency, observe that we need polynomial work and n + 1 library calls in each recursive call, and
each recursive call reduces the problem size by at least 1, so we need at most n recursive calls. Thus the
reduction is polynomial.

4. Another Reduction

Consider an undirected graphG, where each vertex has a non-negative integer number of pebbles. A single pebbling
move consists of removing two pebbles from a vertex and adding one pebble to an adjacent vertex, where we can
choose which adjacent vertex. A pebbling move can only be done on a vertex that already has at least two pebbles,
and it will always decrease the total number of pebbles in the graph by exactly one. Our goal is to remove as many
pebbles as we can. Observe that at best, we’ll have at least one pebble remaining in the graph.

Let the PEBBLE problem be, given an undirected graph, and the number of pebbles at each vertex, is there a sequence
of pebbling moves that leaves exactly one pebble in the graph?

Define the Hamiltonian Path Problem as the following problem:

Input: An undirected graph.

Output: true if there exists a path in the graph visiting every vertex exactly once, false otherwise.

Given that the Hamiltonian Path Problem is NP-complete, show that PEBBLE is as well. You may assume that the
total number of pebbles in a graph is polynomial in terms of the size of the graph.

Hint: A single pebbling move can be represented as an ordered pair of vertices (u, v) where we take two pebbles
from u and place one pebble in its neighbor v. A sequence of pebbling moves can be represented by a sequence of
these pairs. Is there any way we can order these pairs nicely?

4.1. Read and Understand the Problem

Read the problem and answer these quick-check-questions.

Make sure you understand PEBBLE and the Hamiltonian Path Problem.

5



• What is the input type?

• What is the output type?

• Are any words in the problem technical terms? Do you know them all?

Solution:

PEBBLE

– Input: An undirected graph where each vertex is labeled with a non-negative integer

– Output: Boolean, can we take all but one pebble from the graph?

Hamiltonian Path Problem

– Input: An undirected graph

– Output: Boolean, is there a path that visits all vertices exactly once?

You’re going to design a reduction – what will that reduction look like?

• Which problem are use solving, and which problem are you assuming you have an algorithm for? Make sure
your reduction is “going the right direction”

• What is the output type for your reduction?

Solution:

We assume we have an algorithm for the PEBBLE Problem. Given a Hamiltonian Path problem, try to turn
it into a PEBBLE Problem.

Output of Hamiltonian Path Problem guarantees the existence of a path that visits all the vertices.

Output of PEBBLE problem guarantees the existence of a sequence of pebble moves that removes all but
one pebble.

4.2. Design the Reduction

Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates” (the
thing that makes it a YES instance), and transform from one type of certificate to the other.

Solution:

Let G be the graph given in the Hamiltonian Path Problem. Let’s say that G has n vertices.

Observe there are n possible starting vertices, so it’s sufficient to check if there’s a Hamiltonian Path for each of
these n possible starting vertices.

Let that starting vertex be v1.

Let p(v) be the number of pebbles at vertex v. Define p(v1) = 2 and p(v) = 1 otherwise (i.e. all vertices start
with one pebble except the starting vertex, which starts with an additional pebble).

We assert that there is a Hamiltonian Path if and only if any of these n PEBBLE problems is true.

4.3. Write The Proof

(a) to be NP-Complete, PEBBLE needs to be in NP. Argue that it is (this argument is usually only 2-3 sentences).

Solution:

Given a sequence of pebbling moves, we just have to check if it’s valid and if it’s long enough to remove

6



enough pebbles. At most this will take polynomial time in terms of the number of pebbles.

(b) Show your reduction is correct. Remember you need to prove two implications and that the running time is
polynomial.

Solution:

First Implication:

Suppose there is a Hamiltonian Path v1, ..., vn.

Then consider the sequence of pebble moves: (v1, v2), (v2, v3), ..., (vn−1, vn). Observe for any vi where
1 ≤ i < n, since vi, vi+1 is in the Hamiltonian Path, then (vi, vi+1)must be an edge in G. Since (vi, vi+1) is
the first pebble move that takes away pebbles from vi, and since vi starts with at least one pebble, then vi
has all of its starting pebbles when we attempt to do that pebble move. In the case that i = 1, then vi has
enough pebbles to do the move since it starts with two pebbles. In the case that 1 < i < n, then (vi−1, vi)
was the previous pebble move, so vi just gained a pebble and started with one pebble. So vi has at least
two pebbles and has enough to pebbles to make the pebble move.

After this sequence, observe vn has not lost any pebbles, so it still has its starting pebble, and it also just
gained a pebble from the move (vn−1, vn), so it has two pebbles. Since the graph started with n+1 pebbles
and we made n − 1 moves, there are only two pebbles left, and vn has both of them. Then, simply add
the move (vn, vn−1), which is valid since vn has two pebbles and the edge (vn, vn−1) exists since (vn−1, vn)
was a valid move. Now we have on pebble left.

So there is indeed a sequence of pebble moves removing all but one pebble.

Second Implication:

Suppose we have a sequence of pebble moves removing all but one pebble. We need to show that there
also exists a Hamiltonian Path.

Since we start with n+ 1 pebbles, and each move removes one pebble, this sequence must have exactly n
moves.

Observe that after we’ve made zero pebble moves, the only vertex with at least two pebbles is v1 by
construction, which has exactly two.

Suppose for sake of induction that after we’ve made k−1moves, where 0 ≤ k−1 < n−1, there is exactly
one vertex vk with at least two pebbles and that vertex has exactly two pebbles. Then since k− 1 < n− 1,
we still have more moves in our sequence. Since only vk has at least two pebbles, our kth move must be
from vk to some other vertex, call it vk+1. In the case that vk+1 has no pebbles, then no vertices will have
two pebbles after this move, so we can’t make moves, but since k < n we still have moves and that’s a
contradiction. By the inductive hypothesis, vk+1 has less than two pebbles, so vk+1 had one pebble and
after the kth move it has two pebbles. So after k moves, there is exactly one vertex, namely vk+1, with at
least two pebbles and that vertex has exactly two pebbles.

Then by induction, the first n− 1 moves can be written as the sequence (v1, v2), (v2, v3), ..., (vn−1, vn).

Since this removes n − 1 pebbles, there are 2 pebbles remaining after this sequence. Then one of the
pebbles has to be at vn since that was the last move in the subsequence. Since there is still one more
move, one of the pebbles must have two pebbles, and since vn already has one, it must have the other. So
vn is the only vertex with pebbles after the first n− 1 moves.

Since each of the other n − 1 vertices start with a pebble and end with none after the first n − 1 moves,
there must be some move that removes their pebble. Since there are exactly n−1moves in the beginning,
there is a bijection between those n− 1 vertices and the first n− 1 moves corresponding to which vertex
a move removes pebbles from. So all the vertices v1, ..., vn are distinct.

Then consider the path v1, ..., vn, which visits each of the n vertices exactly once. Observe this is indeed a
valid path since for 1 ≤ i < n− 1, since vi, vi+1 was a pebble move, then vi, vi+1 must be an edge. So this
is a Hamiltonian Path.

7



Polynomial Time: From the reduction, we run the PEBBLE algorithm n times, once for each start vertex,
so this only contributes a polynomial factor. Additionally, to modify the graph each time, we simply label
each vertex in constant time, which takes linear time to do so. So overall, this runtime is polynomial.

8


	1 A Fun Reduction
	1.1 Read and Understand the Problem
	1.2 Design the Reduction
	1.3 Write The Proof

	2 A Tricky Reduction
	2.1 Read and Understand the Problem
	2.2 Design the Reduction
	2.3 Write The Proof

	3 Reduce to decision
	4 Another Reduction
	4.1 Read and Understand the Problem
	4.2 Design the Reduction
	4.3 Write The Proof


