
CSE 421 Section 8

P, NP, Reductions

Administrivia

Announcements & Reminders

● HW 6

○ If you think something was graded incorrectly, submit a regrade request!

● HW 7

○ Was due yesterday, Wednesday 11/30

● HW 8

○ It’s the last homework, woohoo!

○ Due Wednesday 12/7

● Final Exam

○ Scheduled for Monday 12/12 @ 2:30-4:20 in our normal room, KNE 220

Some Definitions & A Strategy

First, some Definitions:

● Problem: a set of inputs and the correct outputs

● Instance: a single input to a problem

● Decision Problem: a problem where the output is “yes” or “no”

● Reduction: 𝐴 ≤ 𝐵

○ Informally: A reduces to B means “we can solve A using a library for B”

○ Formally: 𝐴 reduces to 𝐵 in polynomial time if there is an algorithm to solve problem

𝐴, which, if given access to a library function for solving problem 𝐵, calls the library at

most polynomially-many times and takes at most polynomial-time otherwise excluding

the calls to the library.

P, NP, and P vs. NP

● P (“polynomial”): The set of all decision problems for which there exists an

algorithm that runs in time 𝒪(𝑛𝑘) for some constant 𝑘, where 𝑛 is the size of the

input

● NP (“nondeterministic polynomial”): The set of all decision problems such that

for every YES-instance (of size 𝑛), there is a certificate (of size 𝒪(𝑛𝑘)) for that

instance which can be verified in polynomial time

● P vs. NP: Are P and NP the same complexity class?

○ That is, can every problem that can be verified in polynomial time also be solved in

polynomial time?

NP-hard, NP-complete

● NP-hard: The problem 𝐵 is NP-hard if for all problems 𝐴 in NP, 𝐴 reduces to 𝐵

● NP-complete: The problem 𝐵 is NP-complete if 𝐵 is in NP and 𝐵 is NP-hard

● Why do we care about NP-hard and NP-complete?

○ Let 𝐵 be an NP-hard problem.

○ Suppose you found a polynomial time algorithm for 𝐵; you now have for free a

polynomial time algorithm for every problem in NP, so 𝑃 = 𝑁𝑃.

○ On the other hand, if any problem in 𝑁𝑃 is not in 𝑃 (any doesn’t have a polynomial time

algorithm), then no NP-complete problem is in 𝑃

Goal of NP-Completeness Reductions

How do you remember which direction? The core idea of an NP-completeness

reduction is a proof by contradiction:

Suppose, for the sake of contradiction, there were a polynomial time algorithm for 𝐵.

But then if there were I could use that to design a polynomial time algorithm for

problem 𝐴.

But we really, really, really don’t think there’s a polynomial time algorithm for

problem 𝐴. So we should really, really, really think there isn’t one for 𝐵 either!

Key Idea: Reduce FROM the known hard problem TO the new problem.

Strategy for Reductions

1. Read and Understand the Problem

2. Design the Reduction

3. Write the Proof

○ Prove Run-Time

○ Prove correctness; requires TWO implications:

■ If the correct answer is YES, then our algorithm says YES

■ If our algorithm says YES, then the correct answer is YES

1. A Fun Reduction

Problem 1 – A Fun Reduction
Define 5-SAT as the following problem:

Input: An expression in CNF form, where every term has exactly 5 literals.

Output: true if there is a variable setting which makes the whole expression

true, false otherwise.

Prove that 5-SAT is NP-complete.

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

CNF form is AND of ORs like (𝑧𝑎∨𝑧𝑑∨𝑧𝑓∨𝑧ℎ∨𝑧𝑖)∧...∧(𝑧𝑐∨𝑧𝑖∨𝑧𝑗∨𝑧𝑚∨𝑧𝑝)

literals 𝑧𝑖 are boolean variables or the negation of boolean variables 𝑥𝑖 or ¬𝑥𝑖

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

We need to reduce an NP-complete problem to 5-SAT in polynomial time. Assume we have an algorithm for
5-SAT. We want to solve 3-SAT. In other words, we want to show that 3-SAT ≤ 5-SAT.

CNF form is AND of ORs like (𝑧𝑎∨𝑧𝑑∨𝑧𝑓∨𝑧ℎ∨𝑧𝑖)∧...∧(𝑧𝑐∨𝑧𝑖∨𝑧𝑗∨𝑧𝑚∨𝑧𝑝)

literals 𝑧𝑖 are boolean variables or the negation of boolean variables 𝑥𝑖 or ¬𝑥𝑖

Problem 1.1 – Read and Understand the Problem
First understand 5-SAT:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

an expression in CNF form where each clause has 5 literals

true or false

We need to reduce an NP-complete problem to 5-SAT in polynomial time. Assume we have an algorithm for
5-SAT. We want to solve 3-SAT. In other words, we want to show that 3-SAT ≤ 5-SAT.

a Boolean which is the answer to the 3-SAT (which we get by calling 5-SAT like a library function)

CNF form is AND of ORs like (𝑧𝑎∨𝑧𝑑∨𝑧𝑓∨𝑧ℎ∨𝑧𝑖)∧...∧(𝑧𝑐∨𝑧𝑖∨𝑧𝑗∨𝑧𝑚∨𝑧𝑝)

literals 𝑧𝑖 are boolean variables or the negation of boolean variables 𝑥𝑖 or ¬𝑥𝑖

Problem 1.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Problem 1.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the

“certificates” (the thing that makes it a YES instance) and transform from one type of certificate

to the other.

Let 𝑥1, . . . 𝑥𝑛 be the variables in the 3-SAT instance and 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the clauses.

Create two dummy variables 𝑑1, 𝑑2. For each clause 𝐶𝑖 , create four clauses:
𝐶𝑖∨ 𝑑1 ∨ 𝑑2
𝐶𝑖 ∨ ¬𝑑1 ∨ 𝑑2
𝐶𝑖 ∨ 𝑑1 ∨ ¬𝑑2
𝐶𝑖 ∨ ¬ 𝑑1 ∨ ¬𝑑2
Our 5-SAT instance is: 𝑥1, . . . 𝑥𝑛, 𝑑1, 𝑑2
The 4𝑚 clauses described above.

Problem 1.3 – Write the Proof
a) To be NP-Complete, 5-SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

b) Show your reduction is correct. Remember you need to prove two

implications and that the running time is polynomial.

Problem 1.3 – Write the Proof
a) To be NP-Complete, you 5-SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

Problem 1.3 – Write the Proof
a) To be NP-Complete, you 5-SAT needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

A verifier would take in the settings of the variables to true and false. Given a
setting, a verifier would check that each clause (i.e., each constraint) is
satisfied. This will take time linear in the length of the constraints, so it is
polynomial time.

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Running Time:

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Running Time:

Running Time: Our algorithm makes 4 copies of every clause and adds a
constant length set of literals to each clause, so the running time to create
the instance is polynomial (and we call the library only once, which is also at
most polynomial).

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Let 𝜑3 be our 3-SAT instance and 𝜑5 be our 5-SAT instance.

Suppose 𝜑3 is satisfiable, we show that our reduction returns true. Since 𝜑3 is
satisfiable, there is a setting of the variables which causes 𝜑3 to be true. Take that
setting, and set 𝑑1, 𝑑2 arbitrarily. Every clause of 𝜑5 is a clause of 𝜑3 with extra
literals ORed on, so since each clause of 𝜑3 is true, each clause of 𝜑5 is as well, and
this is a satisfying assignment.

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Problem 1.3 – Write the Proof
b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Conversely, suppose that our reduction returns true, and therefore 𝜑5 was
satisfiable. Consider a satisfying assignment for 𝜑5. We claim that (ignoring 𝑑1, 𝑑2)
the same assignment satisfies 𝜑3. Consider an arbitrary clause 𝐶𝑖 of 𝜑3. In 𝜑5
there were four clauses built from 𝐶𝑖 (each ORed with all combinations of literals
of 𝑑1, 𝑑2. One of the created clauses in 𝜑5 had both inserted literals involving
𝑑1, 𝑑2 being false (since we included all possible combinations). Since 𝜑5 was
satisfied, this clause evaluated to true, which means that 𝐶𝑖 evaluated to true.
Since 𝐶𝑖 was arbitrary, we have that every clause is true, and therefore a satisfying
assignment for 𝜑3, as required.

2. A Tricky Reduction

Problem 2 – A Fun Reduction
Define IND-SET as follows:

Input: An undirected graph G and a positive integer k

Output: true if there is an independent set in G of size k (or more), false

otherwise.

And 3-SAT as in class

Input: expression in CNF form, where every term has exactly 3 literals.

Output: true if there is a variable setting which makes the whole expression

true, false otherwise.

Prove that IND-SET is NP-complete using 3-SAT.

Problem 2.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look

like normal words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm

for? Make sure your reduction is “going the right direction”

● What is the output type for your reduction?

Work through these questions with the people around you, and then
we’ll go over them together!

Problem 1.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

a graph

Problem 2.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

a graph

true or false

Problem 2.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

a graph

true or false

An independent set is a set of vertices so that 𝐺 has no edges between any pair in the set

Problem 2.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

a graph

true or false

An independent set is a set of vertices so that 𝐺 has no edges between any pair in the set

We want to show that 3-SAT ≤ IND-SET. Assume we have an algorithm for IND-SET. We’re trying
to solve 3-SAT

Problem 2.1 – Read and Understand the Problem
First understand IND-SET:

● What is the input type?

● What is the output type?

● Are there any technical terms in the problem you don’t know? Are there any words that look like normal

words, but are actually technical terms?

Then think about the reduction:

● Which problem are use solving, and which problem are you assuming you have an algorithm for? Make

sure your reduction is “going the right direction”

● What is the output type for your reduction?

a graph

true or false

An independent set is a set of vertices so that 𝐺 has no edges between any pair in the set

We want to show that 3-SAT ≤ IND-SET. Assume we have an algorithm for IND-SET. We’re trying
to solve 3-SAT

a Boolean which is the answer to the 3-SAT (which we get by calling IND-SET like a library function)

Problem 2.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps

to think about the “certificates” (the thing that makes it a YES instance) and

transform from one type of certificate to the other.

Work through this problem with the people around you, and then
we’ll go over it together!

Problem 2.2 – Design the Reduction
Now write a reduction. Remember a reduction is an algorithm! It often helps to think about the “certificates”

(the thing that makes it a YES instance) and transform from one type of certificate to the other.

The key idea is to think about solving 3-SAT as picking a literal from each clause and finding a truth
assignment to make all of them true (where none of the literals we pick are in conflict, like 𝑥𝑖 and ¬ 𝑥𝑖).
We want the independent set that IND-SET finds to correspond to those literals that make each clause
true.

Let 𝑥1, . . . 𝑥𝑛 be the variables in the 3-SAT instance and 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the clauses.

Let 𝐺 be the graph we construct to input into IND-SET. Add one vertex to 𝐺 for each literal in a clause.
For each clause, connect the 3 literals to form a triangle. IND-SET will pick at most one vertex from each
clause, which will be set to true. To ensure that no conflicting literals are picked, connect all pairs of
vertices that correspond to complementary literals. Let 𝑘 be the number of clauses 𝑚.

Our 5-SAT instance is: The graph 𝐺 and number 𝑘 described above.

Problem 2.3 – Write the Proof
a) To be NP-Complete, IND-SET needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

b) Show your reduction is correct. Remember you need to prove two

implications and that the running time is polynomial.

Work through this problem with the people around you, and then
we’ll go over it together!

Problem 2.3 – Write the Proof
a) To be NP-Complete, IND-SET needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

Problem 2.3 – Write the Proof
a) To be NP-Complete, IND-SET needs to be in NP. Argue that it is (this

argument is usually only 2-3 sentences).

A verifier would take in the subset of k vertices that are independent. Given
this set of vertices, a verifier would check that these vertices are actually
independent (i.e. they are not adjacent). This will take time 𝒪(𝐸 + 𝑉), so it is
polynomial time.

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Running Time:

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Running Time:

Running Time: Our algorithm adds every clause to the graph, adds edges for
the 3 literals in each clause, and adds edges connecting complementary
literals, so the running time to create the instance is polynomial (and we call
the library only once, which is also at most polynomial).

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Suppose correct answer is YES and our

reduction returns YES:

Let 𝜑3 be our 3-SAT instance and 𝐺 be our IND-SET instance.

Suppose 𝜑3 is satisfiable, we show that our reduction returns true. Since 𝜑3
is satisfiable, there is a setting of the variables which causes 𝜑3 to be true.
Take that setting, it gives us that at least one literal in every constraint is
true, and no conflicting literals are both true. To get the assignment that
satisfies 𝐺, for each constraint, choose one of the true literals, and add the
corresponding vertex to the independent set. This gives an independent set
of the required size.

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Problem 2.3 – Write the Proof
b) Show your reduction is correct. Suppose our reduction returns YES and

correct answer is YES:

Conversely, suppose that our reduction returns true, and therefore 𝜑3 was
satisfiable. Suppose there is an independent set of at least the size of the
number of constraints. Because of the “in-constraint” edges in 𝐺, an
independent set has at most one per constraint. Thus every constraint has
exactly one vertex in the independent set. The variables of the 𝜑3 match to
the chosen literals. No set literals could be conflicting because of the edges
in 𝐺 connecting corresponding literals, and we satisfy every constraint
because we chose a good setting of one piece with the independent set.
Therefore we have a satisfying assignment of 𝜑3!

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

