Section 5: Solutions

1. Lots of fun, with a normal sleep schedule

You are planning your social calendar for the month. For each day, you can choose to go do a social event or
stay in and catch-up on sleep. If you go to a social event, you will enjoy yourself. But you can only go out for
two consecutive days — if you go to a social event three days in a row, you’ll fall too far behind on sleep and miss
class.

Luckily, you have an excellent social sense, so you know exactly how much you will enjoy any of the social events,
and have assigned each day an (integer) numerical happiness score (and you know you get 0 enjoyment from staying
in and catching up on sleep). You have an array H|] which gives the happiness you would get by going out each
day. Your goal is to maximize the sum of the happinesses for the days you do go out, while not going out for more
than two consecutive days.

1.1. Read and understand the problem

Read the problem and answer the usual quick-check-questions
* Are any words in the problem technical terms? Do you know them all?
* What is the input type?
* What is the output type?

Solution:

Technical terms: “consecutive” means in a row
Input: int[]
Output: int (the maximum sum of happinesses)

1.2. Generate Examples

Generate at least two examples along with their correct answers. It often helps at this point to ask yourself “what
would a greedy algorithm be?” and design a counter-example for that algorithm Solution:

[2,2,1,2,2,1,2,2] has a maximum happiness sum of 6
[10,8,15,9,3,11,12, 13] has a maximum happiness sum of 59

1.3. Write the Dynamic Program

Since we know we’re writing DP algorithms this week, we’re going to make these steps a bit more specific to the DP
process.

(a) Formulate the problem recursively — what are you looking for (in English!!), and what parameters will you
need as you’re doing the calculation?

(b) Write a recurrence for solving the problem you defined in the last part (the recurrence is for the answer, not
the running time).

(c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a single value or the
max/min of a set of values?)?



(d) Give a brief justification for why your recurrence is correct. You do not need a formal inductive proof, but
your intuition will likely resemble one.

Solution:

(a) OPT(i,j)is the most points we can earn in the array from 1..i (inclusive) where we have taken j consecutive
days at the right end of the subproblem (e.g. if ; = 2 then we have included elements 7 and : — 1 but not
element ¢ — 2). Per the problem, we only allow j € {0,1,2} and i € {1, ...,n}.

(b)
A[i] + OPT(i — 1,1) ifi>1,j=2
Ali] + max, OPT(i — 2,y) ifi>2,j=1
o1, - |OPTG—L) i1 =0
Ali] ifi=1,2,7=1
0 ifi=1,j=0
—00 otherwise

(c) max; OPT(n,j)

(d) For i > 1,5 = 2, we must include both A[i] and A[i — 1], but not A[¢i — 2], so we need to add A[i] to
the most points among 1, ...,7 — 1 where we include A[: — 1] but not A[i — 2], which is the definition of
OPT(i — 1,5 — 1).

Fori > 2,j = 1, we must include A[i] but not A[; —1]. We therefore want to add A[:] the maximum points
we can earn from 1, ...,7 — 2. Since we skip element i — 1, we have no requirement on whether to include
i — 2 or not, and just desire the maximum number of points among 1, ...,7 — 2; the best sequence either
excludes i — 2, includes A[i — 2] but not A[i — 3|, or includes both A[i — 2], A[i — 3] but not A[i — 4], thus
we want the max of OPT(i — 2,0), OPT(i — 2,1), OPT(; — 2,2) added to A[{]

If 5 = 0, we simply need to skip A[i], and want the maximum number of points for 1, ...,7 — 1 with no
restrictions. We thus check all three options for the end of the array (none, one, or two elements at the
right).

For the base/edge cases: for ¢ = 1,2,j = 1, our only choice is to take A[i] and for i = 1,5 = 0, we must
not take any elements. All other combinations of ¢, j are invalid (there are no elements to take, or j is
large enough we would have to take more elements than there are) so we we choose —co which will never
enter into a max calculation.

1.4. Analyze the Dynamic Program

(a) Describe a memoization structure for your algorithm. Solution:

We need an n x 3 array, where entry i, j is OPT(4, j).

(b) Describe a filling order for your memoization structure. Solution:

Outer loop i from 1 to n
Inner loop j from 0 to 2.

(c) State and justify the running time of an iterative solution. Solution:



In each recursive case, we check at most 3 entries, and we have O (n) entries to fill, so our total running
time is O (n).

More Problems!

2. Longest Increasing Subsequence AGAIN

We've already seen a recurrence for Longest Increasing Subsequence. Let’s write another!

As before, [10, -2, 5,0, 3,11, 8] has a longest increasing subsequence of 4 elements: [—2,0, 3, §]

2.1. Write the Dynamic Program

(a) Formulate the problem recursively — what are you looking for (in English!!), and what parameters will you
need as you’re doing the calculation? To make sure you get a different solution than the one from class, you
should ask yourself to answer the question “what’s the longest increasing subsequence where the first included
element is the one at index ¢, and how would I find that?” Solution:

Let LISAlt(¢) be the length of the longest increasing subsequence of A[] where element i is the first element
of the subsequence.

(b) Write a recurrence for solving the problem you defined in the last part (the recurrence is for the answer, not
the running time). Solution:

ifi=n
LISAlt(i) = {1 +mgx{11[ Ali] < A[j]] - LISAlt(5)} otherwise
J>t

(c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a single value or the
max/min of a set of values?)? Solution:

max; LISAlt(4).

(d) Give a brief justification for why your recurrence is correct. You do not need a formal inductive proof, but
your intuition will likely resemble one. Solution:

For the base case, since n is the farthest right element it is the only element in a subsequence starting from
that location.

If we begin at element i, then either it is the only element or there is an element after. The recurrence
checks all elements after — if they are the second element in that sequence, they must be after ¢, have the
element be greater than A[¢]. That new location j will then start the rest of the increasing subsequence,
so making all those recursive calls suffices to find the best one.

2.2. Analyze the Dynamic Program

(a) Describe a memoization structure for your algorithm. Solution:

We need a (1D) array of size n.




(b) Describe a filling order for your memoization structure. Solution:

We fill from n down to 1.

(c) State and justify the running time of an iterative solution. Solution:

Creating entry i requires checking i — 1 recursive calls. Since we have n entries, we need O (n?) time.
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