
CSE 421 Section 2

Graph Search



Administrivia



Announcements & Reminders

● HW1 

○ Was due yesterday, 10/5

○ Remember, this quarter we have a LATE PROBLEMS policy, instead of a late 

assignments policy

○ Can turn in up to 5 problems late

○ Can turn in a late problem up to 48 hours late

● HW2

○ Due Wednesday 10/12 @ 10pm



Big-O



Big-O Review

● Big-O lets us analyze the runtime of algorithms as a function of the size of the input, usually 
denoted as 𝑛

● Super important for understanding algorithms and comparing them! 
(so, you will be doing this analysis for every algorithm you write)

● Given two functions 𝑓 and 𝑔:
○ 𝑓(𝑛) is 𝑶(𝒈(𝒏)) iff there is a constant 𝑐 > 0 so that 

𝑓(𝑛) is eventually always < 𝑐 ⋅ 𝑔(𝑛)

○ 𝑓(𝑛) is 𝛀(𝒈(𝒏)) iff there is a constant 𝑐 > 0 so that
𝑓(𝑛) is eventually always > 𝑐 ⋅ 𝑔(𝑛)

○ 𝑓(𝑛) is 𝚹(𝒈(𝒏)) iff there are constants 𝑐1, 𝑐2 > 0 so that
eventually always 𝑐1 ⋅ 𝑔(𝑛) < 𝑓(𝑛) < 𝑐2 ⋅ 𝑔(𝑛)

𝑶(𝒈(𝒏)) is fancy ≤

𝛀(𝒈(𝒏)) is fancy ≥

𝚹(𝒈(𝒏)) is fancy ≈



Big-O Tips for Comparing

● We’re looking for asymptotic comparison, so just testing values won’t 
necessarily give you a good idea

● Exponentials: 2𝑛 and 3𝑛 are different, which means 2𝑛 and 2 Τ𝑛 2 are different! 
[constant factors IN EXPONENTS are not constant factors]

● Exponentials vs Polynomials: for all 𝑟 > 1 and all 𝑑 > 0, 𝑛𝑑 = 𝑂(𝑟𝑛)
[in other words, every exponential grows faster than every polynomial]

● Logs vs Polynomials: log𝑎(𝑛) is asymptotically less than 𝑛𝑏 for any positive constants 𝑎, 𝑏

● Key strategy: rewriting functions as 2𝑓(𝑛) or log(𝑓 𝑛 ) will often make it 
easier to find the correct order for functions



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case 

that f(n) is O(g(n)). Additionally, if there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

Work on ordering the functions in this problem with the people around you, and 
then we’ll go over it together!

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2

Hint: A useful trick in these problems is to know 
that since log(·) is an increasing function, if 𝑓(𝑛) is 
𝑂(𝑔(𝑛)), then log(𝑓(𝑛)) is 𝑂(log(𝑔 𝑛 ). But be 
careful! Since log(·) makes functions much smaller 
it can obscure differences between functions. For 
example, even though 𝑛3 is less than 𝑛4 , 
log(𝑛3) and log(𝑛4) are big-Θ of each other.
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• 2 𝑛

• 3 𝑛

• log(𝑛)
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• 𝑛
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Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2
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Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2

• 2log(𝑛)

• 2𝑛 log(𝑛)
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• log(𝑛)
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Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

e) 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

e) 𝑛

f) 2log(𝑛)

note: this is just n

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

h) 3 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if 

there are any pairs such that f(n) is Θ(g(n)), mark those pairs. 

a) log(log 𝑛 )
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛 )2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

h) 3 𝑛

i) 2𝑛 log(𝑛)

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛 )2



Depth First Search



DFS

● Very similar to how we completed the BFS algorithm, but here we trade the queue 

for the call stack!

● You may have learned an alternate version of this this concept originally, but the 

way we will do it in this class is with recursion

○ There are some differences because of this, so pay attention to the pseudocode!



DFS Algorithm – simple version

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For



DFS Algorithm – counter version with wrapper

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 1

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

Tip: the counter just tracks when each node is first put 
on the stack, and when each node is removed 



DFS and Edge Classification

● Tree Edges: edges where you discover a new vertex

● Forward Edges: edges that go from an ancestor to a descendant

● Backward Edges: edges that go from a descendant to an ancestor

● Cross Edges: edges going between vertices without an ancestor relationship



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

Work on running through the 
DFS of this graph with the 
people around you, and then 
we’ll go over it together!

a
b

c d

f

e

g

h

Reminder: Edge classifications 
are Tree Edge, Back Edge, 
Forward Edge, and Cross Edge



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a

Stack: 
a

1,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b

Stack: 
b
a

1,  
edge: 
(a, b)

2,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b

Stack: 
a

1,  
2, 3 



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c

Stack: 
c
a

1,  
edge: 
(a, c)

2, 3 

4,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d

Stack: 
d
c
a

1,  
edge: 
(c, d)

2, 3 

4,  

5,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g

Stack: 
g
d
c
a

1,  
edge: 
(d, g)

2, 3 

4,  

5,  

6,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g

Stack: 
d
c
a

1,  
2, 3 

4,  

5,  

6, 7  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g

Stack: 
c
a

1,  
2, 3 

4,  

5, 8 

6, 7  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e

Stack: 
e
c
a

1,  
edge: 
(c, e)

2, 3 

4,  

5, 8 

6, 7  

9,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f

Stack: 
f
e
c
a

1,  
edge: 
(e, f)

2, 3 

4,  

5, 8 

6, 7  

9,  

10,  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f

Stack: 
e
c
a

1,  
2, 3 

4,  

5, 8 

6, 7  

9,  

10, 11  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f

Stack: 
c
a

1,  
2, 3 

4,  

5, 8 

6, 7  

9, 12  

10, 11  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f

Stack: 
a

1,  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f

Stack: 
1, 14  

2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f
h

Stack: 
h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15,   



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

Seen: 
a
b
c
d
g
e
f
h

Stack: 
1, 14  

2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Tree Edges:
edges where you 
discover a new vertex



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Tree Edges: 
(a,b)
(a,c)
(c,d)
(d,g)
(c,e)
(f,g)



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Forward Edges: 
edges that go from an 
ancestor to a descendant



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Forward Edges: 
(a, d)
(c, f)



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Back Edges:
edges that go from a 
descendant to an ancestor



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Back Edge: 
(g, c)



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Cross Edges: 
edges going between 
vertices without an 
ancestor relationship



Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and 
end times for each vertex.

a
b

c d

f

e

g

h

1, 14  
2, 3 

4, 13

5, 8 

6, 7  

9, 12  

10, 11  

15, 16 

Cross Edge: 
(f, g)



Graph Modeling



Modeling a Problem

● In order to write an algorithm for a word problem, first we need to translate that 
word problem into a form that we can interact with more easily. 

● Often, that means figuring out how to encode it into data structures and 
identifying what type of algorithm might work for solving it

● A common form this will take is graph modeling, turning the problem into a 

graph. This will let us use graph algorithms to help us find our solution.



Graph Modeling Steps

1. Ask "what are my fundamental objects?" (These are usually your vertices)

2. Ask "how are they related to each other?" (These are usually your edges) 
• Be sure you can answer these questions: 

• Are the edges directed or undirected?

• Are the edges weighted? If so, what are the weights? Are negative edges possible?

• The prior two usually warrant explicit discussion in a solution. You should also be able to 

answer, "are there self-loops and multi-edges", though often it doesn't need explicit mention in 

the solution.

3. Ask "What am I looking for, is it encoded in the graph?" Are you looking for a path in the graph? 

A short(-est) one or long(-est) one or any one? Or maybe an MST or something else?

4. Ask "How do I find the object from 3?" If you know how, great! Choose an algorithm you know. If 

not, can you design an algorithm?

5. If stuck on step 4, you might need to go back to step 1! Sometimes a different graph representation 

leads to better results, and you'll only realize it around step 3 or 4.



Writing Algorithms Using Existing Algorithms

● Often, a problem can be solved by using an existing algorithm in one of two ways:

○ Modifying the existing algorithm slightly

○ Calling the existing algorithm (like a library function) with some additional 
work before and/or after the call

● Both are valid approaches, and which one you choose depends on the problem

● Whenever possible, it’s a good idea to use ideas that you know work! You don’t 

need to start from scratch to reinvent the wheel



Problem 4 – Graph Modeling

In this problem we’re going to solve a classic riddle. 

(a) First, you should solve the classic riddle yourself to get a feel for the problem. 2 You are on 
the beach with a jug that holds exactly 5 gallons, a jug that holds exactly 3 gallons, and a 
large bucket. Your goal is to put exactly 4 gallons of water into the bucket. Unfortunately, 
the jugs are not graduated (e.g., you can’t just fill the larger jug 4/5 full). What you can do are 
the following operations. 

• Completely fill any of your jugs. 
• Pour from one of your containers into another until the first container is empty or the 

second is full. 
• Pour out all the remaining water in a container. 

How do you get 4 gallons of water into the bucket?

Work on part (a) of the problem with the people around you, and then we’ll go over it together!



Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?



Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?

Fill the 5 gallon jug, pour into the 3 gallon jug until it is full (the jugs now contain 
2 and 3 gallons respectively). Pour from the larger jug into the large bucket (it 
now has 2 gallons). Empty the 3 gallon jug, and repeat all these steps to get the 
desired 4 gallons. 



Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?

Fill the 5 gallon jug, pour into the 3 gallon jug until it is full (the jugs now contain 
2 and 3 gallons respectively). Pour from the larger jug into the large bucket (it 
now has 2 gallons). Empty the 3 gallon jug, and repeat all these steps to get the 
desired 4 gallons. 

Alternatively, Fill the 3 gallon jug, pour into the 5 gallon jug. Fill the 3 gallon jug 
again, pour until the 5 gallon jug is full (they now contain 5 gallons and 1 gallon 
respectively) . Pour the 1 gallon from the 3 gallon jug into the bucket. Refill the 3 
gallon jug and pour into the bucket to bring the total to 4 gallons. 

There may be other solutions.



Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs 
with (positive integer) capacities 𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine 
whether it is possible to get exactly 𝑡 gallons into the bucket



Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs 
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with (positive integer) capacities 𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine 
whether it is possible to get exactly 𝑡 gallons into the bucket

Intuition:
The “state” of the puzzle can be represented as the number of gallons in each of 
the jugs and the bucket.

We encode the rules of the puzzle such that each possible step is an edge.

Work on this problem with the people around you. First see if you can model it as 
a graph, and then think about how you could use that graph in an algorithm. 
Then we’ll go over it together!
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bucket. So, we need edges that connect the different states for each of these valid operations.

What am I looking for, is it encoded in the graph?: The series of pours that will get 𝑡 gallons of water into 
the bucket. So, any path that gets us from 0 gallons in all the jugs and the bucket, to one of the states where 
the amount of water in the bucket is equal to 𝑡, if one exists, is the solution. To make things easier, we could 
add an extra “end” vertex that connects to every such state where there are 𝑡 gallons in the bucket. Then, any 
path starting from the 0 vertex ending at this “end” vertex is a possible solution.
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What are my fundamental objects?: How much water is in each jug and how much is in the final bucket. We 
need a vertex for each possible state the jugs and bucket can be in.

How are they related to each other?: We can fill a jug, empty a jug, or pour one jug into another or the 
bucket. So, we need edges that connect the different states for each of these valid operations.

What am I looking for, is it encoded in the graph?: The series of pours that will get 𝑡 gallons of water into 
the bucket. So, any path that gets us from 0 gallons in all the jugs and the bucket, to one of the states where 
the amount of water in the bucket is equal to 𝑡, if one exists, is the solution. To make things easier, we could 
add an extra “end” vertex that connects to every such state where there are 𝑡 gallons in the bucket. Then, any 
path starting from the 0 vertex ending at this “end” vertex is a possible solution.

How do I find the object from 3: Work on this part with the people around you, see if you can put it together 
into an algorithm, and we’ll go over it together!
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– 𝑗𝑘 + 𝑗𝑙 = 𝑗’𝑘 + 𝑗′𝑙

Finally, we add a target vertex 𝑧, to the graph. Add an edge from 
every tuple where 𝑏 = 𝑡 to z. 

We then use [B/D]FS, starting from the all 0’s tuple, and 
searching to see if 𝑧 is reachable. If it is, we can return true (and 
predecessor edges will show the steps to take). If 𝑡 is not 
reachable, then return false.
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Correctness

Suppose our algorithm returns true. Then [B/D]FS found a walk from all 0’s to 𝑧. By construction of the 
graph, each edge corresponds to a valid rule we can apply in the original puzzle. Since the only edges going 
into 𝑡 are from states where 𝑏 = 𝑡, the walk must reach such a state, thus the puzzle can be solved by doing 
the steps on the edges of that walk. 

Conversely, suppose the puzzle is solvable. Then there is a series of steps that can be taken to put 𝑡 gallons 
into the bucket. Each legal step has a corresponding edge in the graph to the next state by construction, so 
there is a path to a valid stopping state (i.e., a tuple where 𝑏 = 𝑡), we added an edge from all such vertices to 
𝑧, so there is a path from all 0’s to 𝑧. [B/D]FS will discover this path, so we will return true.
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Running Time 

Let 𝑛 = (𝑡 + 1)𝚷(𝑐𝑖 + 1). Note that this is the number of vertices in our graph. Each vertex has a constant 
number of edges leaving it (as you are performing one of three operations (dump, pour, fill) among a 
constant number of jugs. So the graph can be has O(n) edges and can be constructed in O(n) time. Running 
[B/D]FS in a graph with O(n) vertices and edges takes O(n) time, so the overall running time is O(n).



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


