
CSE 421 Section 2

Graph Search

Administrivia

Announcements & Reminders

● HW1

○ Was due yesterday, 10/5

○ Remember, this quarter we have a LATE PROBLEMS policy, instead of a late

assignments policy

○ Can turn in up to 5 problems late

○ Can turn in a late problem up to 48 hours late

● HW2

○ Due Wednesday 10/12 @ 10pm

Big-O

Big-O Review

● Big-O lets us analyze the runtime of algorithms as a function of the size of the input, usually
denoted as 𝑛

● Super important for understanding algorithms and comparing them!
(so, you will be doing this analysis for every algorithm you write)

● Given two functions 𝑓 and 𝑔:
○ 𝑓(𝑛) is 𝑶(𝒈(𝒏)) iff there is a constant 𝑐 > 0 so that

𝑓(𝑛) is eventually always < 𝑐 ⋅ 𝑔(𝑛)

○ 𝑓(𝑛) is 𝛀(𝒈(𝒏)) iff there is a constant 𝑐 > 0 so that
𝑓(𝑛) is eventually always > 𝑐 ⋅ 𝑔(𝑛)

○ 𝑓(𝑛) is 𝚹(𝒈(𝒏)) iff there are constants 𝑐1, 𝑐2 > 0 so that
eventually always 𝑐1 ⋅ 𝑔(𝑛) < 𝑓(𝑛) < 𝑐2 ⋅ 𝑔(𝑛)

𝑶(𝒈(𝒏)) is fancy ≤

𝛀(𝒈(𝒏)) is fancy ≥

𝚹(𝒈(𝒏)) is fancy ≈

Big-O Tips for Comparing

● We’re looking for asymptotic comparison, so just testing values won’t
necessarily give you a good idea

● Exponentials: 2𝑛 and 3𝑛 are different, which means 2𝑛 and 2 Τ𝑛 2 are different!
[constant factors IN EXPONENTS are not constant factors]

● Exponentials vs Polynomials: for all 𝑟 > 1 and all 𝑑 > 0, 𝑛𝑑 = 𝑂(𝑟𝑛)
[in other words, every exponential grows faster than every polynomial]

● Logs vs Polynomials: log𝑎(𝑛) is asymptotically less than 𝑛𝑏 for any positive constants 𝑎, 𝑏

● Key strategy: rewriting functions as 2𝑓(𝑛) or log(𝑓 𝑛) will often make it
easier to find the correct order for functions

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case

that f(n) is O(g(n)). Additionally, if there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

Work on ordering the functions in this problem with the people around you, and
then we’ll go over it together!

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Hint: A useful trick in these problems is to know
that since log(·) is an increasing function, if 𝑓(𝑛) is
𝑂(𝑔(𝑛)), then log(𝑓(𝑛)) is 𝑂(log(𝑔 𝑛). But be
careful! Since log(·) makes functions much smaller
it can obscure differences between functions. For
example, even though 𝑛3 is less than 𝑛4 ,
log(𝑛3) and log(𝑛4) are big-Θ of each other.

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

e) 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

e) 𝑛

f) 2log(𝑛)

note: this is just n

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

h) 3 𝑛

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Problem 1 – Big-O-No

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is O(g(n)). Additionally, if

there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

a) log(log 𝑛)
b) log(𝑛)
c) log(𝑛2)

this function is Θ(log(n)); they differ only by the constant factor 2
d) (log 𝑛)2

e) 𝑛

f) 2log(𝑛)

note: this is just n

g) 2 𝑛

h) 3 𝑛

i) 2𝑛 log(𝑛)

• 2log(𝑛)

• 2𝑛 log(𝑛)

• log(log(𝑛))

• 2 𝑛

• 3 𝑛

• log(𝑛)

• log(𝑛2)

• 𝑛

• (log 𝑛)2

Depth First Search

DFS

● Very similar to how we completed the BFS algorithm, but here we trade the queue

for the call stack!

● You may have learned an alternate version of this this concept originally, but the

way we will do it in this class is with recursion

○ There are some differences because of this, so pay attention to the pseudocode!

DFS Algorithm – simple version

DFS(u)

Mark u as “seen”

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

DFS Algorithm – counter version with wrapper

DFS(u)

Mark u as “seen”

u.start = counter++

For each edge (u,v) //leaving u

If v is not “seen”

DFS(v)

End If

End For

u.end = counter++

DFSWrapper(G)

counter = 1

For each vertex u of G

If u is not “seen”

DFS(u)

End If

End For

Tip: the counter just tracks when each node is first put
on the stack, and when each node is removed

DFS and Edge Classification

● Tree Edges: edges where you discover a new vertex

● Forward Edges: edges that go from an ancestor to a descendant

● Backward Edges: edges that go from a descendant to an ancestor

● Cross Edges: edges going between vertices without an ancestor relationship

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

Work on running through the
DFS of this graph with the
people around you, and then
we’ll go over it together!

a
b

c d

f

e

g

h

Reminder: Edge classifications
are Tree Edge, Back Edge,
Forward Edge, and Cross Edge

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a

Stack:
a

1,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b

Stack:
b
a

1,
edge:
(a, b)

2,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b

Stack:
a

1,
2, 3

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c

Stack:
c
a

1,
edge:
(a, c)

2, 3

4,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d

Stack:
d
c
a

1,
edge:
(c, d)

2, 3

4,

5,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g

Stack:
g
d
c
a

1,
edge:
(d, g)

2, 3

4,

5,

6,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g

Stack:
d
c
a

1,
2, 3

4,

5,

6, 7

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g

Stack:
c
a

1,
2, 3

4,

5, 8

6, 7

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e

Stack:
e
c
a

1,
edge:
(c, e)

2, 3

4,

5, 8

6, 7

9,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f

Stack:
f
e
c
a

1,
edge:
(e, f)

2, 3

4,

5, 8

6, 7

9,

10,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f

Stack:
e
c
a

1,
2, 3

4,

5, 8

6, 7

9,

10, 11

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f

Stack:
c
a

1,
2, 3

4,

5, 8

6, 7

9, 12

10, 11

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f

Stack:
a

1,
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f

Stack:
1, 14

2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f
h

Stack:
h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15,

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

Seen:
a
b
c
d
g
e
f
h

Stack:
1, 14

2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Tree Edges:
edges where you
discover a new vertex

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Tree Edges:
(a,b)
(a,c)
(c,d)
(d,g)
(c,e)
(f,g)

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Forward Edges:
edges that go from an
ancestor to a descendant

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Forward Edges:
(a, d)
(c, f)

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Back Edges:
edges that go from a
descendant to an ancestor

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Back Edge:
(g, c)

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Cross Edges:
edges going between
vertices without an
ancestor relationship

Problem 2 – Mechanical: DFS

Run Depth-First-Search on the graph below to classify the edges. Mark the start and
end times for each vertex.

a
b

c d

f

e

g

h

1, 14
2, 3

4, 13

5, 8

6, 7

9, 12

10, 11

15, 16

Cross Edge:
(f, g)

Graph Modeling

Modeling a Problem

● In order to write an algorithm for a word problem, first we need to translate that
word problem into a form that we can interact with more easily.

● Often, that means figuring out how to encode it into data structures and
identifying what type of algorithm might work for solving it

● A common form this will take is graph modeling, turning the problem into a

graph. This will let us use graph algorithms to help us find our solution.

Graph Modeling Steps

1. Ask "what are my fundamental objects?" (These are usually your vertices)

2. Ask "how are they related to each other?" (These are usually your edges)
• Be sure you can answer these questions:

• Are the edges directed or undirected?

• Are the edges weighted? If so, what are the weights? Are negative edges possible?

• The prior two usually warrant explicit discussion in a solution. You should also be able to

answer, "are there self-loops and multi-edges", though often it doesn't need explicit mention in

the solution.

3. Ask "What am I looking for, is it encoded in the graph?" Are you looking for a path in the graph?

A short(-est) one or long(-est) one or any one? Or maybe an MST or something else?

4. Ask "How do I find the object from 3?" If you know how, great! Choose an algorithm you know. If

not, can you design an algorithm?

5. If stuck on step 4, you might need to go back to step 1! Sometimes a different graph representation

leads to better results, and you'll only realize it around step 3 or 4.

Writing Algorithms Using Existing Algorithms

● Often, a problem can be solved by using an existing algorithm in one of two ways:

○ Modifying the existing algorithm slightly

○ Calling the existing algorithm (like a library function) with some additional
work before and/or after the call

● Both are valid approaches, and which one you choose depends on the problem

● Whenever possible, it’s a good idea to use ideas that you know work! You don’t

need to start from scratch to reinvent the wheel

Problem 4 – Graph Modeling

In this problem we’re going to solve a classic riddle.

(a) First, you should solve the classic riddle yourself to get a feel for the problem. 2 You are on
the beach with a jug that holds exactly 5 gallons, a jug that holds exactly 3 gallons, and a
large bucket. Your goal is to put exactly 4 gallons of water into the bucket. Unfortunately,
the jugs are not graduated (e.g., you can’t just fill the larger jug 4/5 full). What you can do are
the following operations.

• Completely fill any of your jugs.
• Pour from one of your containers into another until the first container is empty or the

second is full.
• Pour out all the remaining water in a container.

How do you get 4 gallons of water into the bucket?

Work on part (a) of the problem with the people around you, and then we’ll go over it together!

Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?

Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?

Fill the 5 gallon jug, pour into the 3 gallon jug until it is full (the jugs now contain
2 and 3 gallons respectively). Pour from the larger jug into the large bucket (it
now has 2 gallons). Empty the 3 gallon jug, and repeat all these steps to get the
desired 4 gallons.

Problem 4 – Graph Modeling

(a) How do you get 4 gallons of water into the bucket?

Fill the 5 gallon jug, pour into the 3 gallon jug until it is full (the jugs now contain
2 and 3 gallons respectively). Pour from the larger jug into the large bucket (it
now has 2 gallons). Empty the 3 gallon jug, and repeat all these steps to get the
desired 4 gallons.

Alternatively, Fill the 3 gallon jug, pour into the 5 gallon jug. Fill the 3 gallon jug
again, pour until the 5 gallon jug is full (they now contain 5 gallons and 1 gallon
respectively) . Pour the 1 gallon from the 3 gallon jug into the bucket. Refill the 3
gallon jug and pour into the bucket to bring the total to 4 gallons.

There may be other solutions.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs
with (positive integer) capacities 𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine
whether it is possible to get exactly 𝑡 gallons into the bucket

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs
with (positive integer) capacities 𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine
whether it is possible to get exactly 𝑡 gallons into the bucket

Intuition:
The “state” of the puzzle can be represented as the number of gallons in each of
the jugs and the bucket.

We encode the rules of the puzzle such that each possible step is an edge.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs
with (positive integer) capacities 𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine
whether it is possible to get exactly 𝑡 gallons into the bucket

Intuition:
The “state” of the puzzle can be represented as the number of gallons in each of
the jugs and the bucket.

We encode the rules of the puzzle such that each possible step is an edge.

Work on this problem with the people around you. First see if you can model it as
a graph, and then think about how you could use that graph in an algorithm.
Then we’ll go over it together!

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

What are my fundamental objects?:

How are they related to each other?:

What am I looking for, is it encoded in the graph?:

How do I find the object from 3:

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

What are my fundamental objects?: How much water is in each jug and how much is in the final bucket. We
need a vertex for each possible state the jugs and bucket can be in.

How are they related to each other?:

What am I looking for, is it encoded in the graph?:

How do I find the object from 3:

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

What are my fundamental objects?: How much water is in each jug and how much is in the final bucket. We
need a vertex for each possible state the jugs and bucket can be in.

How are they related to each other?: We can fill a jug, empty a jug, or pour one jug into another or the
bucket. So, we need edges that connect the different states for each of these valid operations.

What am I looking for, is it encoded in the graph?:

How do I find the object from 3:

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

What are my fundamental objects?: How much water is in each jug and how much is in the final bucket. We
need a vertex for each possible state the jugs and bucket can be in.

How are they related to each other?: We can fill a jug, empty a jug, or pour one jug into another or the
bucket. So, we need edges that connect the different states for each of these valid operations.

What am I looking for, is it encoded in the graph?: The series of pours that will get 𝑡 gallons of water into
the bucket. So, any path that gets us from 0 gallons in all the jugs and the bucket, to one of the states where
the amount of water in the bucket is equal to 𝑡, if one exists, is the solution. To make things easier, we could
add an extra “end” vertex that connects to every such state where there are 𝑡 gallons in the bucket. Then, any
path starting from the 0 vertex ending at this “end” vertex is a possible solution.

How do I find the object from 3:

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

What are my fundamental objects?: How much water is in each jug and how much is in the final bucket. We
need a vertex for each possible state the jugs and bucket can be in.

How are they related to each other?: We can fill a jug, empty a jug, or pour one jug into another or the
bucket. So, we need edges that connect the different states for each of these valid operations.

What am I looking for, is it encoded in the graph?: The series of pours that will get 𝑡 gallons of water into
the bucket. So, any path that gets us from 0 gallons in all the jugs and the bucket, to one of the states where
the amount of water in the bucket is equal to 𝑡, if one exists, is the solution. To make things easier, we could
add an extra “end” vertex that connects to every such state where there are 𝑡 gallons in the bucket. Then, any
path starting from the 0 vertex ending at this “end” vertex is a possible solution.

How do I find the object from 3: Work on this part with the people around you, see if you can put it together
into an algorithm, and we’ll go over it together!

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Let 𝑆 be the set of all 11-tuples, where for the
first 10 entries, the entry is an integer between
0 and 𝑐𝑖 , and the final entry is an integer
between 0 and 𝑡. There are
(𝐶 + 1)10· (𝑡 + 1) such states.

We make a graph with a vertex for every
element of 𝑆. And add an edge from 𝑢 to 𝑣 if
and only if the states meet one of these
conditions.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Let 𝑆 be the set of all 11-tuples, where for the
first 10 entries, the entry is an integer between
0 and 𝑐𝑖 , and the final entry is an integer
between 0 and 𝑡. There are
(𝐶 + 1)10· (𝑡 + 1) such states.

We make a graph with a vertex for every
element of 𝑆. And add an edge from 𝑢 to 𝑣 if
and only if the states meet one of these
conditions.

From a given state (𝑗1, 𝑗2, … , 𝑗10, 𝑏), you can
move to another state (𝑗’1 , 𝑗’2 , … , 𝑗’10, 𝑏’) if
and only if one of the following hold:

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Let 𝑆 be the set of all 11-tuples, where for the
first 10 entries, the entry is an integer between
0 and 𝑐𝑖 , and the final entry is an integer
between 0 and 𝑡. There are
(𝐶 + 1)10· (𝑡 + 1) such states.

We make a graph with a vertex for every
element of 𝑆. And add an edge from 𝑢 to 𝑣 if
and only if the states meet one of these
conditions.

From a given state (𝑗1, 𝑗2, … , 𝑗10, 𝑏), you can
move to another state (𝑗’1 , 𝑗’2 , … , 𝑗’10, 𝑏’) if
and only if one of the following hold:

• There is only one index, 𝑘, where the tuples differ, and
𝑗’𝑘 = 0. (we emptied a jug or the bucket)

• There is only one index, 𝑘, (𝑘 ≤ 10) where the tuples differ,
and 𝑗𝑘 = 𝑐𝑘. (we filled a jug)

• There are two indices, 𝑘, 𝑙 where the tuples differ:
– 𝑗’𝑘 = 0 or 𝑗′𝑙 = 𝑐𝑙
– 𝑗𝑘 + 𝑗𝑙 = 𝑗’𝑘 + 𝑗′𝑙

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Let 𝑆 be the set of all 11-tuples, where for the
first 10 entries, the entry is an integer between
0 and 𝑐𝑖 , and the final entry is an integer
between 0 and 𝑡. There are
(𝐶 + 1)10· (𝑡 + 1) such states.

We make a graph with a vertex for every
element of 𝑆. And add an edge from 𝑢 to 𝑣 if
and only if the states meet one of these
conditions.

From a given state (𝑗1, 𝑗2, … , 𝑗10, 𝑏), you can
move to another state (𝑗’1 , 𝑗’2 , … , 𝑗’10, 𝑏’) if
and only if one of the following hold:

• There is only one index, 𝑘, where the tuples differ, and
𝑗’𝑘 = 0. (we emptied a jug or the bucket)

• There is only one index, 𝑘, (𝑘 ≤ 10) where the tuples differ,
and𝑗𝑘 = 𝑐𝑘. (we filled a jug)

• There are two indices, 𝑘, 𝑙 where the tuples differ:
– 𝑗’𝑘 = 0 or 𝑗′𝑙 = 𝑐𝑙
– 𝑗𝑘 + 𝑗𝑙 = 𝑗’𝑘 + 𝑗′𝑙

Finally, we add a target vertex 𝑧, to the graph. Add an edge from
every tuple where 𝑏 = 𝑡 to z.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Let 𝑆 be the set of all 11-tuples, where for the
first 10 entries, the entry is an integer between
0 and 𝑐𝑖 , and the final entry is an integer
between 0 and 𝑡. There are
(𝐶 + 1)10· (𝑡 + 1)such states.

We make a graph with a vertex for every
element of 𝑆. And add an edge from 𝑢 to 𝑣 if
and only if the states meet one of these
conditions.

From a given state (𝑗1, 𝑗2, … , 𝑗10, 𝑏), you can
move to another state (𝑗’1 , 𝑗’2 , … , 𝑗’10, 𝑏’) if
and only if one of the following hold:

• There is only one index, 𝑘, where the tuples differ, and
𝑗’𝑘 = 0. (we emptied a jug or the bucket)

• There is only one index, 𝑘, (𝑘 ≤ 10) where the tuples differ,
and𝑗𝑘 = 𝑐𝑘. (we filled a jug)

• There are two indices, 𝑘, 𝑙 where the tuples differ:
– 𝑗’𝑘 = 0 or 𝑗′𝑙 = 𝑐𝑙
– 𝑗𝑘 + 𝑗𝑙 = 𝑗’𝑘 + 𝑗′𝑙

Finally, we add a target vertex 𝑧, to the graph. Add an edge from
every tuple where 𝑏 = 𝑡 to z.

We then use [B/D]FS, starting from the all 0’s tuple, and
searching to see if 𝑧 is reachable. If it is, we can return true (and
predecessor edges will show the steps to take). If 𝑡 is not
reachable, then return false.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Correctness

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Correctness

Suppose our algorithm returns true. Then [B/D]FS found a walk from all 0’s to 𝑧. By construction of the
graph, each edge corresponds to a valid rule we can apply in the original puzzle. Since the only edges going
into 𝑡 are from states where 𝑏 = 𝑡, the walk must reach such a state, thus the puzzle can be solved by doing
the steps on the edges of that walk.

Conversely, suppose the puzzle is solvable. Then there is a series of steps that can be taken to put 𝑡 gallons
into the bucket. Each legal step has a corresponding edge in the graph to the next state by construction, so
there is a path to a valid stopping state (i.e., a tuple where 𝑏 = 𝑡), we added an edge from all such vertices to
𝑧, so there is a path from all 0’s to 𝑧. [B/D]FS will discover this path, so we will return true.

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Running Time

Problem 4 – Graph Modeling

(b) Now, write an algorithm to solve any instance of this puzzle. You are given a list of 10 jugs with (positive integer) capacities
𝑐1, … , 𝑐10, ranging from 1 to 𝐶. Your goal is to determine whether it is possible to get exactly 𝑡 gallons into the bucket

Running Time

Let 𝑛 = (𝑡 + 1)𝚷(𝑐𝑖 + 1). Note that this is the number of vertices in our graph. Each vertex has a constant
number of edges leaving it (as you are performing one of three operations (dump, pour, fill) among a
constant number of jugs. So the graph can be has O(n) edges and can be constructed in O(n) time. Running
[B/D]FS in a graph with O(n) vertices and edges takes O(n) time, so the overall running time is O(n).

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

