Section 1: Proof Review and Stable Matchings

1. Write it Better: A Proof by Contradiction

What follows is a correct, but poorly presented, proof by contradiction. We’'ll show two different ways to make it
cleaner.

Claim: For every simple graph G, if every node of G has degree at least 2, then G has a cycle.

An unclear proof. Suppose, for the sake of contradiction, there is a graph G such that every node of G has degree
at least 2, but G has no cycle.

We will construct a simple path in G. Start at some node vy, of G. Follow vy along an edge to find v;. Now, since
vy (like every other node) has degree at-least 2, there is another edge attached to v;. Follow it to a vertex vy. If vy
is a vertex we have already visited (i.e., vp), then we have found a cycle, a contradiction! Otherwise, from vs, we
may repeat the same argument. Continue from v, (also degree at-least-2) to a vertex vs. If v3 is a repeat (vg or vy)
then we have a contradiction! Otherwise continue finding vy, vs, The graph is finite, so we cannot continue this
process forever. Eventually we find a repeated vertex, which means we have a cycle, a contradiction! O

(a) It'scommon in proofs by contradiction to have cases like we’ve seen here “Option A: we’re done with our proof!
Option B: do something else.” Here, though, that “do something else” has us basically where we started (a new
end-vertex on our path where we’ve used one edge), and it’s tempting to say “repeat indefinitely, eventually
you hit the other case.” That’s mathematically correct! But not particularly elegant. And you have to write
down enough steps that your reader knows what the pattern is, which could be a lot. The more elegant version
is to use “proof by contradiction with extremality” Instead of slowly building an object (here, the path), just
start with the most extreme version of the object at the beginning (usually the biggest one or the first one).
Starting with the right object lets us eliminate Option A and jump right to option B.}

Let’s see if this proof is any cleaner. We've set you up with the extreme path, finish the proof.

Proof. Suppose, for the sake of contradiction, there is a graph G such that every node of G has degree at least
2, but G has no cycle. Let P = vg, vy, ..., v, be a longest simple path in G. O

(b) There’s another style yellow-flag in this proof. We’re proving an implication and our contradiction was the
negation of one of the two things we supposed at the start. That usually means that proof by contrapositive
would be clearer. Try writing this proof by contrapositive.

With both of these alterations, we have a proof that will be much clearer to our readers. Notice, though, the core
idea is identical in all three proofs: if everything is degree-two-or-more you could keep discovering new vertices, but
the graph is finite so you can’t do that. All three proofs are just different ways of presenting that core idea.

2. Find The Bug: Spoof By Induction

What follows is an incorrect proof by induction.

Claim: Every (undirected) tree with at least three nodes has at least two nodes of degree-one.

Spoof. Let P(n) be “Every tree with at least n nodes has at least two nodes of degree-one.”
Base Case: n = 3. There is only one undirected tree with three nodes. It has two nodes of degree-one.
Inductive Hypothesis: Suppose P(n) holds for n = 3, ..., k for an arbitrary k£ > 3.

Inductive Step: let T be an arbitrary tree with k£ nodes. By inductive hypothesis, T has at least two nodes of
degree-one. Call them v and v.

IDon’t be intimidated by how superficially different the start looks. We haven’t changed the idea of the proof — this is just a proof-writing
trick! We’ll use this trick a lot when we get to greedy algorithms.

We now build 7", which has k£ + 1 nodes. Take T, and create a new node w. Since we are interested in connected
trees, we must connect w; we break into cases depending on what it is adjacent to.

Case 1: w is adjacent to neither u nor v
If w is adjacent to a node other than w, v then v and v still have degree-one, so the claim holds on 7".

Case 2: w is adjacent to one of u, v but not the other
If w is adjacent to u or v, then the other of u, v and w will both be degree-one

Case 3: w is adjacent to both u, v
This case is impossible! If w were adjacent to both v and v, then the path in 7" between u and v (which exists
because T was connected) along with (u,w) and (v, w) form a cycle, which is not allowed in a tree.

In all (allowed) cases, 7" has the required degree-one vertices. Since we constructed 7" to have k + 1 vertices, we
have shown P(k + 1). O

(a) Clearly describe the bug and why the proof is incorrect.
(b) What is the correct “skeleton” of the inductive step (i.e., the right things to assume and the right target)?

(c) Is the claim true? If so, write a correct proof. If not, provide a counter-example. You may use the fact “every
tree has at least one node of degree-one” (this fact is just the Claim from Problem 1 in contrapositive form).

3. Find the bug: More Failed Induction

In this problem you will fix an incorrect induction proof.

Let’s do a little bit of problem setup. Suppose you have a stable matching instance with n horses and n riders. Of
the n horses, 5 of the horses are popular. That is, every rider’s list has those 5 horses as their first 5 choices (in
some order, not necessarily the same for each rider). Similarly, you have 5 popular riders, such that every horse
has those 5 riders as their top choices.

Let P(n) be “In every stable matching instance with n horses, n riders, of which 5 horses and 5 riders are popular:
in every stable matching, popular horses are matched only to popular riders.”

Spoof. We will show P(n) holds for all n > 5 by induction on n.

Base Case (n = 5)
With 5 horses and riders, every horse and rider is popular. Since every stable matching pairs every agent, every
agent is matched to a popular agent.

Inductive Hypothesis: Suppose P(n) holds for n = 5, ..., k for an arbitrary integer k > 5.

Inductive Step: Let hq, ..., hg, 71, ..., 7% be k horses and riders, with hy, ..., hs, 71, ..., 75 being the popular agents. We
add agents hy41 and rp41. By popularity, hi41 has r1,...,r5 (in some order) as its 5 favorite agents and 74, has
hi, ..., hs (in some order) as their 5 favorite agents. Further, let 7, and hj, be each other’s 6 choices (i.e. top
choice outside the popular riders.

Now, consider any stable matching in the old (size-k) instance, and create a stable matching for the new instance
by pairing hy1 with 7.

We now show that this matching is stable for the new instance. Since it was stable for the small instance, the only
possible blocking pairs must involve hy_; or r1. By IH, every popular agent is matched to another popular agent.
Regardless of where hy. 1 and ;.1 was added to the popular agent’s list, they fall after the popular agents, so hj1
and rp41 cannot form a blocking pair with the popular agents. And since they have each other as their next choices,
they cannot form a blocking pair with anyone else. Thus we have that there are no blocking pairs, and the matching
is stable. The popular agents remain matched to each other, as required. O

(a) There are at least two errors in this proof. Describe them!

(b) Write a correct proof of this claim. Do NOT use induction. Use a proof by contradiction instead.

4. Proof Practice: Proving Code Correct

Recall Dijkstra’s Algorithm from 332.

Dijkstra(Graph G, Vertex source)
initialize distances to =, source.dist to 0
mark all vertices unprocessed
initialize MPQ as a Min Priority Queue
add source at priority 0
while(MPQ is not empty){
u = MPQ.removeMin()
foreach(edge (u,v) leaving u){
if(u.dist+weight(u,v) < v.dist){
if(v.dist == «) //if v not in MPQ
MPQ.insert(v, u.dist+weight(u,v))
else
MPQ.decreaseKey(v, u.dist+weight(u,v))
v.dist = u.dist+weight(u,v)
v.predecessor = u
3
b
mark u as processed

b

Consider the following claim:

For all n, the n time a vertex, v, is removed from MPQ, v.dist contains the true shortest path distance from source
to v.

(a) Prove the claim by induction.

(b) Prove the claim by contradiction. Hint: It’s extremely helpful to think about the closest vertex where something
is wrong, rather than just any old iteration.
During your proof, you may use the following fact without proof: Every non-infinite value of v.dist is the
length of a path from v.dist (not necessarily the shortest path).

5. Gale-Shapley

Consider the following stable matching instance:

1t h37h17h2,h4
T2 ! h27h17h4,h3
T3 : h27h37h17h4
T4 - h37h4,h1,h2

hy:ry4,71,73,72
h2:7‘1,7“377"2,7“4
h317“1,7“3,7“4,7“2
h4:7'3,r1,r2,7’4

(a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing which free rider
to propose next, always choose the one with the smallest index (e.g., if r; and r, are both free, always choose
7”1).

(b) Run the Gale-Shapley Algorithm with riders proposing on the same instance. But now, when choosing which
free rider to propose next, always choose the one with the largest index. Do you get the same result?

(c) Now run the algorithm with horses proposing, breaking ties by taking the free horse with the smallest index.
Do you get the same result?

6. A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and at
least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.

	1 Write it Better: A Proof by Contradiction
	2 Find The Bug: Spoof By Induction
	3 Find the bug: More Failed Induction
	4 Proof Practice: Proving Code Correct
	5 Gale-Shapley
	6 A Quick Proof

