
CSE 421 Section 1

Stable Matching



Administrivia & Introductions



Your TAs

• Allie Pfleger

• BS/MS student, transferred in Fall of 2020

• 8th time TA, first time 421!!

• I’m married and I have a 5-year-old daughter Sophia

• I love knitting, reading, playing games, and watching fun movies and shows!

• Airei Fukuzawa (eye-ray)
• 3rd year undergrad

• 1st time TA (Please tolerate me ☺)

• Took 421 Spring22

• I love eating, traveling, and live music! 



Homework

● Submissions

○ LaTeX (highly encouraged)

■ overleaf.com

■ template and LaTeX guide posted on course website!

○ Word Editor that supports mathematical equations

○ Handwritten neatly and scanned 

● All homeworks will be turned in via Gradescope

● Homeworks typically due on Wednesdays at 10pm 



Announcements & Reminders

● Section Materials

○ Handouts will be provided in at each section

○ Worksheets and sample solutions will be available on the course calendar later this 

evening

● HW1

○ Due Wednesday 10/5 @ 10pm



Induction



Induction

● You will be writing lots of induction proofs in this class in order to prove that your 

algorithms work the way you say they will.

● The style requirements for proofs in this class are less stringent than the style 

requirements from 311 

○ there is a style guide doc on the course website (here) about how 421 proofs are 

different than what you did in 311

https://courses.cs.washington.edu/courses/cse421/22au/resources/styleguide.html


Problem 2 - Find The Bug: Spoof By Induction

What follows is an incorrect proof by induction. 

Claim: Every (undirected) tree with at least three nodes has at least two nodes of degree-one. 

Spoof. Let P(n) be “Every tree with at least n nodes has at least two nodes of degree-one.” 

Base Case: n = 3. There is only one undirected tree with three nodes.

It has two nodes of degree-one. 

Inductive Hypothesis: Suppose P(n) holds for n = 3, ..., k for an arbitrary k ≥ 3. 



Problem 2 - Find The Bug: Spoof By Induction

Inductive Step: let 𝑇 be an arbitrary tree with 𝑘 nodes. By inductive hypothesis, 𝑇 has at least two nodes of 

degree-one. Call them 𝑢 and 𝑣. 

We now build 𝑇′, which has 𝑘 + 1 nodes. Take 𝑇, and create a new node 𝑤. Since we are interested in 

connected trees, we must connect 𝑤; we break into cases depending on what it is adjacent to. 

Case 1: 𝑤 is adjacent to neither 𝑢 nor 𝑣. If 𝑤 is adjacent to a node other than u, v then u and v still have degree-

one, so the claim holds on 𝑇′. 

Case 2: 𝑤 is adjacent to one of 𝑢, 𝑣 but not the other. If 𝑤 is adjacent to 𝑢 or 𝑣, then the other of 𝑢, 𝑣 and 𝑤 will 

both be degree-one 

Case 3: 𝑤 is adjacent to both 𝑢, 𝑣. This case is impossible! If 𝑤 were connected to both 𝑢 and 𝑣, then the path in 

𝑇 between 𝑢 and 𝑣 (which exists because 𝑇 was connected) along with (𝑢,𝑤) and (𝑣, 𝑤) form a cycle, which is 

not allowed in a tree. 

In all (allowed) cases, 𝑇′ has the required degree-one vertices. Since we constructed 𝑇′ to have 𝑘 + 1 vertices, 

we have shown 𝑃(𝑘 + 1).



Problem 2 - Find The Bug: Spoof By Induction

a) Clearly describe the bug and why the proof is incorrect. 

b) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

c) Is the claim true? If so, write a correct proof. If not, provide a counter-example. You 

may use the fact “every tree has at least one node of degree-one” (this fact is just 

the Claim from Problem ?? in contrapositive form).

Work on (a) and (b) of this problem with the people around you, and then we’ll go 
over it together!



Problem 2 - Find The Bug: Spoof By Induction

a) Clearly describe the bug and why the proof is incorrect. 



Problem 2 - Find The Bug: Spoof By Induction

a) Clearly describe the bug and why the proof is incorrect. 

We never introduce an arbitrary tree with 𝑘 + 1 nodes in the inductive step! Why 
should our reader believe we have handled all possibilities between our three cases? 
Notice that we don’t have a recursive definition of “tree” – we aren’t doing structural 
induction here! We need to start with an arbitrary tree with 𝑘 + 1 nodes. That’s how 
you show a statement of the form “for all trees with 𝑘 + 1 nodes...” 



Problem 2 - Find The Bug: Spoof By Induction

a) Clearly describe the bug and why the proof is incorrect. 

We never introduce an arbitrary tree with 𝑘 + 1 nodes in the inductive step! Why 
should our reader believe we have handled all possibilities between our three cases? 
Notice that we don’t have a recursive definition of “tree” – we aren’t doing structural 
induction here! We need to start with an arbitrary tree with 𝑘 + 1 nodes. That’s how 
you show a statement of the form “for all trees with 𝑘 + 1 nodes...” 

It turns out that we really have addressed all cases here – every tree really can be built 
with these rules – but without a recursive definition, we’d need to write a detailed 
proof to explain that every tree really can be built that way first. It’s not worth it. 



Problem 2 - Find The Bug: Spoof By Induction

a) Clearly describe the bug and why the proof is incorrect. 

We never introduce an arbitrary tree with 𝑘 + 1 nodes in the inductive step! Why 
should our reader believe we have handled all possibilities between our three cases? 
Notice that we don’t have a recursive definition of “tree” – we aren’t doing structural 
induction here! We need to start with an arbitrary tree with 𝑘 + 1 nodes. That’s how 
you show a statement of the form “for all trees with 𝑘 + 1 nodes...” 

It turns out that we really have addressed all cases here – every tree really can be built 
with these rules – but without a recursive definition, we’d need to write a detailed 
proof to explain that every tree really can be built that way first. It’s not worth it. 

When proving a for-all statement by induction always start with the big thing and 
find the smaller thing inside.



Problem 2 - Find The Bug: Spoof By Induction

b) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?



Problem 2 - Find The Bug: Spoof By Induction

b) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

We must start with “Let 𝑇′ be an arbitrary tree with 𝑘 + 1 nodes.” 



Problem 2 - Find The Bug: Spoof By Induction

b) What is the correct “skeleton” of the inductive step (i.e., the right things to assume 

and the right target)?

We must start with “Let 𝑇′ be an arbitrary tree with 𝑘 + 1 nodes.” 

Our conclusion will be that 𝑇′ has at least two nodes of degree-one, so 𝑃(𝑘 + 1) holds.



Problem 2 - Find The Bug: Spoof By Induction
c) Is the claim true? If so, write a correct proof. If not, provide a counter-example. You may use 

the fact “every tree has at least one node of degree-one” (this fact is just the Claim from 

Problem ?? in contrapositive form).



Problem 2 - Find The Bug: Spoof By Induction
c) Is the claim true? If so, write a correct proof. If not, provide a counter-example. You may use 

the fact “every tree has at least one node of degree-one” (this fact is just the Claim from 

Problem ?? in contrapositive form).

Proof. The proof is identical except for the IS: 

Inductive Step: Let 𝑇′ be an arbitrary tree with 𝑘 + 1 nodes. Let 𝑢 be a vertex of 𝑇′ of degree-one (this 
first vertex exists by the fact), and call its neighbor 𝑣. Let 𝑇′′ be the tree created by deleting 𝑢 from 𝑇′. 

Observe that, since 𝑢 was degree-one, the only simple paths that used (𝑢, 𝑣) had 𝑢 as an endpoint 
(as once we use (𝑢, 𝑣) to arrive at/leave 𝑢 we cannot reuse it to leave/arrive). Thus 𝑇′′ is still a 
connected tree, and we can apply the IH to 𝑇′′ to conclude there are at least two vertices 𝑤1, 𝑤2 of 𝑇′′
that are degree-one. 

We now find the two degree-one nodes in the original tree 𝑇′ . We know that 𝑢 has degree-one (and is 
not the same as 𝑤1 or 𝑤2 since 𝑢 was deleted to create 𝑇′′). Since 𝑢 has degree-one, it can only attach 
to one of 𝑤1, 𝑤2, thus at least one (the other one) of 𝑤1, 𝑤2 is an additional node of degree-one, as 
required.



Proof by Contradiction



Contradiction

● In addition to induction, proof by contradiction is another really common 

technique we will use to prove that algorithms are correct in this class.

● Explicitly state that you are doing proof by contradiction in the introduction of 

your proof!

● Explicitly identify what it is that you are supposing!



Problem 1 - Write it Better: Proof by Contradiction

What follows is a correct, but poorly presented, proof by contradiction. We’ll show two different ways to make 

it cleaner. 

Claim: For every simple graph 𝐺, if every node of 𝐺 has degree at least 2, then 𝐺 has a cycle. 

An unclear proof. Suppose, for the sake of contradiction, there is a graph 𝐺 such that every node of 𝐺 has 

degree at least 2, but 𝐺 has no cycle. 

We will construct a simple path in 𝐺. 

Start at some node 𝑣0, of 𝐺. Follow 𝑣0 along an edge to find 𝑣1. Now, since 𝑣1 (like every other node) has degree 

at least 2, there is another edge attached to 𝑣1. Follow it to a vertex 𝑣2. If 𝑣2 is a vertex we have already visited 

(i.e., 𝑣0), then we have found a cycle, a contradiction! Otherwise, from 𝑣2, we may repeat the same argument. 

Continue from 𝑣2 (also degree at least 2) to a vertex 𝑣3. If 𝑣3 is a repeat (𝑣0 or 𝑣1) then we have a contradiction! 

Otherwise continue finding 𝑣4, 𝑣5, .... The graph is finite, so we cannot continue this process forever. Eventually 

we find a repeated vertex, which means we have a cycle, a contradiction! 



Problem 1 - Write it Better: Proof by Contradiction

a) It’s common in proofs by contradiction to have cases like we’ve seen here; “Option A: we’re done with our 

proof! Option B: do something else.” Here, though, that “do something else” has us basically where we 

started (a new end-vertex on our path where we’ve used one edge), and it’s tempting to say “repeat 

indefinitely, eventually you hit the other case.” That’s mathematically correct! But not particularly 

elegant. And you have to write down enough steps that your reader knows what the pattern is, which 

could be a lot. 

The more elegant version is to use proof by contradiction with extremality. Instead of slowly building an 

object (here, the path), just start with the most extreme version of the object at the beginning (usually the 

biggest one or the first one). Starting with the right object lets us eliminate Option A and jump right to 

Option B.

Let’s see if this proof is any cleaner. Finish the proof: 

Proof. Suppose, for the sake of contradiction, there is a graph 𝐺 such that every node of 𝐺 has degree at 

least 2, but 𝐺 has no cycle. Let 𝑃 = 𝑣0, 𝑣1, … , 𝑣𝑘 be a longest simple path in 𝐺. 



Problem 1 - Write it Better: Proof by Contradiction

a) Finish the proof:

Proof. Suppose, for the sake of contradiction, there is a graph 𝐺 such that every node of 𝐺 has degree at 

least 2, but 𝐺 has no cycle. Let 𝑃 = 𝑣0, 𝑣1, … , 𝑣𝑘 be a longest simple path in 𝐺. 

Work on (a) of this problem with the people around you, and then we’ll go over it 
together!



Problem 1 - Write it Better: Proof by Contradiction

a) Finish the proof:

Proof. Suppose, for the sake of contradiction, there is a graph 𝐺 such that every node of 𝐺 has degree at 

least 2, but 𝐺 has no cycle. Let 𝑃 = 𝑣0, 𝑣1, … , 𝑣𝑘 be a longest simple path in 𝐺. 

Since 𝑣0 has degree at-least 2, it must have another neighbor, 𝑤 other than 𝑣1. 

Since 𝑃 is a longest simple path, 𝑤 must be a repeat of a vertex among 𝑣1, ..., 𝑣𝑘
(otherwise 𝑤, 𝑣0, 𝑣1, ...𝑣𝑘 would be a longer simple path). 

Combining the edge (𝑣0, 𝑤) with 𝑃 from 𝑣0 to 𝑤 gives a cycle. 
But 𝐺 was acyclic, that’s a contradiction! 



Gale-Shapley Algorithm



Stable Matching

Given 𝑛 riders and 𝑛 horses with preference lists, how can we find a stable matching so all 

riders have horses and all horses have riders?

Perfect Matching:

● Each rider is paired with exactly one horse

● Each horse is paired with exactly one rider

Stability: No ability to exchange partners

Blocking: An unmatched pair r-h is blocking if they both prefer each other to current 

matches

Stable Matching: perfect matching with no blocking pairs



Gale-Shapley Algorithm

Algorithm to find a stable matching: (we will prove it works in lecture)

Initially all 𝑟 in 𝑅 and ℎ in 𝐻 are free 

while there is a free 𝑟

Let ℎ be highest on 𝑟’s list that 𝑟 has not proposed to 

if ℎ is free 

match (𝑟,ℎ) 

else //ℎ is not free 

Let 𝑟′ be the current match of ℎ

if ℎ prefers 𝑟 to 𝑟′

unmatch (𝑟′,ℎ) 

match (𝑟,ℎ)



Problem 5 – Gale-Shapley

Consider the following stable matching instance:

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4

Work on (a) of this problem with the people around you, and then 
we’ll go over it together!



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)

r2 chooses h2 (r1, h3), (r2, h2)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)

r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)

r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)
r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)

r2 chooses h1 (r1, h3), (r2, h1), (r3, h2)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)
r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)
r2 chooses h1 (r1, h3), (r2, h1), (r3, h2)

r4 chooses h3    (r1, h3), (r2, h1), (r3, h2), (r4, h3)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)
r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)
r2 chooses h1 (r1, h3), (r2, h1), (r3, h2)

r4 chooses h3    (r1, h3), (r2, h1), (r3, h2), (r4, h3)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)
r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)
r2 chooses h1 (r1, h3), (r2, h1), (r3, h2)
r4 chooses h3    (r1, h3), (r2, h1), (r3, h2), (r4, h3)

r4 chooses h4    (r1, h3), (r2, h1), (r3, h2), (r4, h4)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



Problem 5 – Gale-Shapley

a) Run the Gale-Shapley Algorithm with riders proposing on the instance above. When choosing 

which free rider to propose next, always choose the one with the smallest index (e.g., if r1 and 

r2 are both free, always choose r1).

r1 chooses h3 (r1, h3)
r2 chooses h2 (r1, h3), (r2, h2)
r3 chooses h2 (r1, h3), (r2, h2), (r3, h2)
r2 chooses h1 (r1, h3), (r2, h1), (r3, h2)
r4 chooses h3    (r1, h3), (r2, h1), (r3, h2), (r4, h3)
r4 chooses h4    (r1, h3), (r2, h1), (r3, h2), (r4, h4)

(r1, h3), (r2, h1), (r3, h2), (r4, h4)

r1: h3, h1, h2, h4

r2: h2, h1, h4, h3

r3: h2, h3, h1, h4

r4: h3, h4, h1, h2

h1: r4, r1, r3, r2

h2: r1, r3, r2, r4

h3: r1, r3, r4, r2

h4: r3, r1, r2, r4



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


