
Approximation 
Algorithms

CSE 421 Fall 22

Lecture 29



Approximation Ratio

For a minimization problem (find the shortest/smallest/least/etc.)

If 𝑂𝑃𝑇(G) is the value of the best solution for 𝐺, and 𝐴𝐿𝐺(𝐺) is the 
value that your algorithm finds, then 𝐴𝐿𝐺 is an 𝛼 approximation 
algorithm if for every 𝐺,

𝛼 ⋅ 𝑂𝑃𝑇 𝐺 ≥ 𝐴𝐿𝐺(𝐺)

i.e. you’re within an 𝛼 factor of the real best.



Approximation Ratio

For a maximization problem (find the longest/biggest/most/etc.)

If 𝑂𝑃𝑇(G) is the value of the best solution for 𝐺, and 𝐴𝐿𝐺(𝐺) is the 
value that your algorithm finds, then 𝐴𝐿𝐺 is an 𝛼 approximation 
algorithm if for every 𝐺,

𝑂𝑃𝑇 𝐺 ≤ 𝛼 ⋅ 𝐴𝐿𝐺(𝐺)

i.e. you’re within an 𝛼 factor of the real best.

𝛼 switched sides! We want 𝛼 ≥ 1 for both maximization and 
minimization to make it easier to think about. 
If your maximization solution is “half-as-good” it’s a 2-approximation.



Approximation Ratio

If I’m trying to find the minimum vertex cover, then to have a 2-
approximation, I need to show:

If I’m trying to find the maximum clique, then the have an 𝑛-
approximation, I need to show:



Approximation Ratio

If I’m trying to find the minimum vertex cover, then to have a 2-
approximation, I need to show:

If I’m trying to find the maximum clique, then the have an 𝑛-
approximation, I need to show:

∀𝐺: 2 ⋅ 𝑂𝑃𝑇 𝐺 ≥ 𝐴𝐿𝐺(𝐺)

∀𝐺:𝑂𝑃𝑇 𝐺 ≤ 𝑛 ⋅ 𝐴𝐿𝐺 𝐺

Mnemonic: multiply the smaller of the two numbers by 

something until it becomes bigger.

OR: think of the ratio (ALG/OPT or OPT/ALG) that will be >1, 

and make it as small as possible (“it’s less than 2”)



Approximation Algorithms

Can easily fill an entire course…

Two prototypical examples (there are others!):

Combinatorial approaches
Techniques we’ve used much of this quarter! 

But instead of focusing on the best aim for simple, and pretty good.

LP-based approaches
Write an LP

“round” to a ‘pretty good’ solution.



Recall: Finding an approximation for VC

For every edge, at least one of 𝑢,𝑣 is in the minimum vertex cover.

But instead of checking which of 𝑢, 𝑣 a good idea to add, just add them 
both!

While(G still has edges)

Choose any edge (u,v)

Add u to VC, and v to VC

Delete u v and any edges touching them

EndWhile

We talked about this before. 

During greedy algorithms week!



Does it work?

Do we find a vertex cover?

Is it close to the smallest one?

Does it run in polynomial time?



Do we find a vertex cover?

When we delete an edge, it is covered (because we added both 𝑢 and 
𝑣. And we only stop the algorithm when every edge has been deleted. 
So every edge is covered (i.e. we really have a vertex cover).



How big is it?

Let 𝑂𝑃𝑇 be a minimum vertex cover.

Key idea: when we add 𝑢 and 𝑣 to our vertex cover (in the same step), 
at least one of 𝑢 or 𝑣 is in 𝑂𝑃𝑇.

Why? (𝑢, 𝑣) was an edge! 𝑂𝑃𝑇 covers (𝑢, 𝑣) so at least one is in 𝑂𝑃𝑇.

So how big is our vertex cover? At most twice as big!

This is a 2-approximation for vertex cover!



Another Approximation Algorithm

Let’s look at another approximation algorithm for vertex cover.

Remember the linear program for vertex cover?



Vertex Cover LP

Minimize ∑𝑥𝑢

Subject to: 

𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑢 ≤ 1 for all 𝑢.

Don’t worry about the weights for today. 



Non-Bipartite

What if our original graph isn’t bipartite?

1

11

1

𝑥 = 1/2 𝑥 = 1/2

𝑥 = 1/2𝑥 = 1/2

1

𝑥 = 1/2

The LP finds a fractional 

vertex cover of weight 

2.5

There’s no “real”/integral 

VC of weight 2.5. –
lightest is weight 3. 

There’s a “gap” between 

integral and fractional 

solutions.



So, what if the graph isn’t bipartite?

Big idea:

Just round!

If 𝑥𝑢 ≥
1

2
, round up to 1.

If 𝑥𝑢 <
1

2
, round down to 0

Two questions – is it a vertex cover? How far are we from the true 
minimum?

Pollev.com/robbie

Minimize ∑𝑤 𝑢 ⋅ 𝑥𝑢
Subject to: 

𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸
0 ≤ 𝑥𝑢 ≤ 1 for all 𝑢.



Is it a vertex cover?

Every edge was covered in the fractional matching

i.e. for every edge (𝑢, 𝑣)

𝑥𝑢 + 𝑥𝑣 ≥ 1.

At least one of those is getting rounded up!

So every edge is covered.

And we’ve rounded to integers, so we have a “real” vertex cover.



How good of an approximation is it?

Well, we might have doubled the value of the LP when we rounded. But 
we definitely didn’t do any more than that.

2 ⋅ 𝐿𝑃 ≥ 𝐴𝐿𝐺

And the value of the LP is definitely not bigger than the true size of the 
vertex cover (because otherwise the LP would have found that).

𝑂𝑃𝑇 ≥ 𝐿𝑃

Combining:

2 ⋅ 𝑂𝑃𝑇 ≥ 𝐴𝐿𝐺

So we’re safe in calling this a 2-approximation.



Comparing to the LP value

We did a weird thing on that last slide.

We were supposed to compare the value of our vertex cover to the best 
vertex cover.

But instead we compared it to the value of the LP…which we know isn’t 
always the value of the vertex cover!

That wasn’t laziness, it’s a very common technique. We know very little 
about the true value of the vertex cover (if we knew what it looked like 
VERY VERY precisely, why couldn’t we just write an algorithm to find it? 
We actually won’t know much). So we start with what the algorithm 
gave us (that we do understand).



Side Note

Could we do better?

Not just with the LP.

If you take a graph with 𝑛 vertices and every possible edge, the LP’s 
minimum is 𝑛/2, the true minimum vertex cover is size 𝑛 − 1.

The ratio is 2 − 1/𝑛. So if we don’t at least double the value sometimes 
we won’t get a vertex cover at all. 

Getting a 1.9999999 approximation is an open problem!



Hard to approximate



Inapproximability

We can get pretty darn close to finding the best vertex cover.

Other problems, we can’t get close at all. And importantly we know why.

For every 𝜀 > 0, there is not a poly-time approximation algorithm for 
MAX-CLIQUE with approximation ratio better than 𝑂(𝑛1−𝜀)

Unless P = NP.

There are reductions from NP-complete problems to “finding a halfway-
decent MAX-CLIQUE approximation”



P vs. NP

What does the world look like?

If P = NP finding the exact maximum clique is polynomial-time solvable.

So is finding a minimum vertex cover and 2-coloring. They’re all easy.

If P ≠ NP then these problems are fundamentally different.
Max-clique is REALLY REALLY difficult; don’t even expect to get close.

Min Vertex Cover is difficult, but if you’re willing to settle for ok, you’re in really 
good shape.

2-coloring can be exactly solved.



One More Problem

At a VERY high-level



Another Algorithm

Lets try to approximate Travelling Salesperson. 

Some assumptions:

1. The graph is undirected.

2. The graph is complete (every edge is there) – the edges might represent 
series of roads rather than individual streets. Weight is how much gas you 
need to travel.

2. The weights satisfy the “triangle inequality” (it’s faster to go from 𝑥 to 
𝑦 directly than it is to go from 𝑥 to 𝑦 through 𝑥).

Given a weighted graph, find a tour (a walk that visits every vertex 

and returns to its start) of weight at most 𝑘.

Traveling Salesperson



TSP starting point

What would be a good baseline?

Something we can calculate that would at least connect things up for 
us. 

A Minimum Spanning Tree! A

B

C

D

E

5

4

2

3
3

3
4

5

4

6



From MST to Tour

How do we get from start to every vertex and 
back?

Make the starting point the root, do a traversal 
(DFS) of the graph!

Why not BFS? Because the “next vertex” isn’t always 
right next to you! (not a problem in this example, 
but very bad if you have a very tall tree)

How much gas do we use in DFS? We use each 
edge twice

A

B

C

D

E

5

4

2

3
3

3
4

5

4

6

If 𝐷 is the starting point:

Go from 𝐷 to 𝐴, back to 𝐷
To 𝐸 Down to 𝐵 back to 𝐸 to 𝐶
Back to 𝐸 back to 𝐷.



Doing a Little Better

Using each edge twice is potentially a little wasteful. Can we do better?

The biggest problem is vertices of odd degree. The last time we enter 
that vertex, the only way out is an already used edge. 

And that’s definitely not taking us somewhere new!

So lets add some possible ways out.

A

B

C

D

E

5

4

2

3
3

3
4

5

4

6



What would help?

A matching would help! (i.e. a set of edges that 
don’t share endpoints) 

Specifically a minimum weight matching.

You can find one of those efficiently (just trust me)

Add those edges in (if they’re already in the MST, 
make an extra copy)!

So we now have the MST AND the minimum 
weight matching on the odd edges.

A

B

C

D

E

5

4

2

3
3

3
4

5

4

6

A

B

C

D

E

5

4

2

3
3

3
4

5

4

6



Did It Help?

So…now every vertex has even degree…but there’s not a 
nice order anymore.

We’ll have to find one.

Start from the starting point, and just follow any unused 
edge!

Because every vertex has even degree, (except for the 
starting vertex) when you go in, you can come out! So 
you can’t “get stuck” 

What if you get back to the start and end up with 
unused edges? Find a visited vertex one is adjacent to 
and “splice in” the cycles.

A

B

C

D

E

A

B

C

D

E

D,A,B,E,D is found first. E,C,E 

found next. After splicing:

D,A,B,E,C,E,D. is the final tour



Is it a good approximation algorithm?

We will visit every vertex at least once!

Every vertex had degree at least one (because we started with an MST!)

So by the end of the process, we had degree at least two on every 
vertex.

And we go back and use all the edges we selected. So we visit every 
vertex, and we start and end at the same place.



Is it a good approximation algorithm?

What does our algorithm produce?

At most 
3

2
𝑂𝑃𝑇 (at most 1.5 times the weight of the optimal tour)

Why? We use every edge once, that’s one 𝑀𝑆𝑇 plus the weight of the 
matching. 

How much is the 𝑀𝑆𝑇? Less than 𝑂𝑃𝑇. (𝑂𝑃𝑇 has a spanning tree inside 
it!)

How much is the matching? Less than 
1

2
𝑂𝑃𝑇. (𝑂𝑃𝑇 is less than a tour on 

the odd vertices, and a tour on the odd vertices is made up of two 
matchings)



Approximating TSP

We found a 
3

2
-approximation for TSP! 

The algorithm is called “Christofides Algorithm”

It’s almost 50 years old.

The best approximation is 
3

2
− 𝜖 where 𝜖 ≈ 10−36

Developed by three researchers at UW in the last two years.

https://arxiv.org/pdf/2007.01409.pdf



Summary

Coping with NP-hardness.

1. Understand your problem really well (make sure you’re not solving an 
easy special case).

2. Prove the problem really is NP-hard.

3. Try a band-aid (SAT library, Integer programming library, etc.)

4. Try to find a good-enough exponential time algorithm or an 
approximation algorithm.


