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Today

Reduction between problems that look *very* different.

A few small things to wrap up
Are reductions really transitive?

Some edge cases to the definitions of P, NP, etc.



A Formal Definition

We need a formal definition of a reduction.

We will say “𝐴 reduces to 𝐵 in polynomial time” (or “𝐴 is polynomial 
time reducible to 𝐵” or "𝐴 reduces to 𝐵” or “𝐴 ≤𝑃 𝐵” or “𝐴 ≤ 𝐵”) if:

There is an algorithm to solve problem 𝐴, which, if given access to a 
library function for solving problem 𝐵,
Calls the library at most polynomially-many times

Takes at most polynomial-time otherwise excluding the calls to the library.



NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete 

Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.



What’s 3-SAT?

Input: A list of Boolean variables 𝑥1, … , 𝑥𝑛

An expression in Conjunctive Normal Form, where each clause has 
exactly 3 literals.
Something like:

𝑧𝑖 ∨ 𝑧𝑗 ∨ 𝑧𝑘 ∧ 𝑧𝑖 ∨ 𝑧ℓ ∨ 𝑧𝑎 ∧ ⋯∧ 𝑧𝑎 ∨ 𝑧𝑏 ∨ 𝑧𝑐
Where 𝑧 is a “literal” a variable or the negation of a variable (𝑥𝑖 , ¬𝑥𝑗 , etc.).

Output: true if there is a setting of the variables where the expression evaluates to 
true, false otherwise.

Why is it called 3-SAT? 3 because you have 3 literals per clause
SAT is short for “satisfiability” can you satisfy all of the constraints?

“AND” of “ORs”

∧ outside parens

∨ inside parens

One of the 

subexpressions 

inside parens



Really? All of them?

The idea that there is an NP-complete problem might be surprising.

Every problem in NP reduces to it? All of them? Like no exceptions?

Yes! Really all of them!



Which Direction?

To show 𝐵 is NP-hard

How do you remember which direction?

The core idea of an NP-completeness reduction is a proof by 
contradiction:

Suppose, for the sake of contradiction, there were a polynomial time 
algorithm for 𝐵. But then if there were I could use that to design a 
polynomial time algorithm for problem 𝐴.

But we really, really, really don’t think there’s a polynomial time 
algorithm for problem 𝐴. So we should really, really, really think there 
isn’t one for 𝐵 either!



Let’s Show a problem is NP-hard.

Once we have one NP-complete problem, the process gets a lot easier.

3-SAT is 𝑁𝑃-complete. Prove that 3-COLOR is 𝑁𝑃-hard.

Input: An undirected graph 𝐺.

Output: True if 𝐺 can be 3-colored (each vertex red, blue, green and no 
edge has same-colored endpoints); false otherwise



To show 3-color is NP-complete

What do we need to show?

To show our new problem is NP-complete
A reduction from a known NP-hard problem to our new problem

That our new problem is in NP itself

(To show our new problems is NP-hard, just do the first step).

We need to show:



To show 3-color is NP-complete

What do we need to show?

To show our new problem is NP-complete
A reduction from a known NP-hard problem to our new problem

That our new problem is in NP itself

(To show our new problems is NP-hard, just do the first step).

We need to show:

3-color is in NP; 3-SAT ≤𝑃 3-COLOR



To show 3-color is NP-complete

We need to show:

3-color is in NP; 3-SAT ≤𝑃 3-COLOR

3-color is in NP (the certificate is the assignment of vertices to colors; a 
linear-time BFS can verify if the coloring is correct).

Get the direction of the reduction right! Double-check it!

The other reduction does exist! (because 3-SAT is NP-complete). You 
won’t notice until it’s too late. Check at the beginning!



This is a big claim!

3-SAT and 3-coloring aren’t all that similar

They both have the number 3, I guess…

In 3-SAT we assign variables to true and false.

In 3-COLOR we assign vertices to red, blue, or green.

How could we do that?
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𝑣 YES!

Yes! 

3ColorCheck algorithm

Transform Output

¬𝑥1 ∨ 𝑥3 ∨ 𝑥5
∧ ¬𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥5
∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥3
∧ (¬𝑥2 ∨ 𝑥3 ∨ 𝑥4)

Transform Input

Idea…



Idea

Need to turn a 3-SAT instance into a 3-COLOR instance

(The reduction has access to a library for 3-COLOR)

And need to use 3-COLOR library to answer for the 3-SAT instance.

We’ll want an assignment of variables to correspond to a coloring

So have a vertex for each variable so that you can color the graph iff
you can make the expression true; colors should correspond to values 
(True, False, and…dummy?)

We’ll tweak this later, but get this intuition first.

Transform certificate into certificate



Idea

We’re going to need little subgraphs that make this happen.

We call them “gadgets.”



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

x1 ¬x1

D

x2 ¬𝑥2 𝑥3 ¬𝑥3



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

𝑥1 ¬𝑥1

D

𝑥2 ¬𝑥2 𝑥3 ¬𝑥3

Interpret coloring as:

𝑥1 is false; 𝑥2 is true;

𝑥3 is false



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

𝑥1 ¬𝑥1

D

𝑥2 ¬𝑥2 𝑥3 ¬𝑥3

Interpret coloring as:

𝑥1 is false; 𝑥2 is false;

𝑥3 is false



Are We Done?

We can interpret a 3-coloring as a setting of the variables!

But, we’re not done. The goal is to say the 3-coloring corresponds to a 
satisfying assignment. One that makes the CNF expression true!

Need to handle each clause



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Bottom row:
T and F are new 

vertices, colored 

green and red. 

Others are already-

made literal vertices



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false)



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false).

Next two must be 

blue



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false).

Next two must be 

blue; then green;

Then uh-oh



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If all literals are false, 

graph can’t be 3-

colored.



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If 𝑥1 is true…

We can complete the 

coloring!



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If ¬𝑥2 is true…

Find a coloring!



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If ¬𝑥2 is true…

We can complete the 

coloring!

Top vertex is 

opposite of ¬𝑥3



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If ¬𝑥3 is true…

We can complete the 

coloring!



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

The graph is 

colorable if and only 

if at least one of the 

three literals is green.



Putting it together

Make a vertex for every literal

Make one of those subgraphs for every clause

Make T,F, Dummy vertices and connect them as shown. 

That’s your graph

D

T F

𝑥1 ¬𝑥1 𝑥𝑛 ¬𝑥𝑛

𝐶𝑚𝐶1

…

…



Putting it together

If there is a satisfying assignment, then the graph is 3-colorable.



Putting it together

If there is a satisfying assignment, then the graph is 3-colorable.

Consider a satisfying assignment. Assign all true literals and T to be 
green, assign all false literals and F to be red, assign D to be blue.

Now consider the clause gadgets. We saw that if at least one literal 
vertex is green, we can color the remaining vertices via case analysis. 
Since we have a satisfying assignment, each clause gadget has a green 
colored node, so we can complete the coloring. This is a 3-coloring of 
the full graph.



Putting it together

If the graph is 3-colorable, then there must be a satisfying assignment



Putting it together

If the graph is 3-colorable, then there must be a satisfying assignment.

Consider a valid 3-coloring. The three vertices T,F,D all must have 
different colors (since they are all adjacent). Call T’s color “green”, F’s 
“red” and D’s “blue.” Since we put edges between 𝑥𝑖 and ¬𝑥𝑖, literals 
always get opposite colors, and since all are attached to D each gets red 
or green. Observe that every gadget is properly colored (as we colored 
the full graph), thus by our case analysis, each gadget must have at least 
one green vertex among the three literals. Set the variables to be true if 
their vertex is green and false if red (since we put edges between 
opposites this is consistent). Since each clause has a green vertex, every 
clause has a true literal and the assignment is satisfying for the 3-SAT 
instance.



Putting it together

The graph can be constructed in polynomial time.

There are a constant number of vertices per clause or variable of the 
SAT instance, and it’s a mechanical process to create the edges, so the 
total time is polynomial. We call the library only once, which is 
polynomial as well.



Some Loose Ends



I have a problem

My problem 𝐶 is too difficult to solve (at least for me). 

So difficult, it’s probably NP-hard. How do I show it?

What does it mean to be NP-hard? 

We need to be able to reduce any problem 𝐴 in NP to 𝐶.

Let’s choose 𝐵 to be a known NP-hard problem. Since 𝐵 is known to be 
NP-hard, 𝐴 ≤ 𝐵 for every possible 𝐴. So if we show 𝐵 ≤ 𝐶 too 
then 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 so every NP problem reduces to 𝐶!



Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output

Algorithm to solve 𝐵



Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output

𝐵 ≤ 𝐶



Why does it work? Because our reductions work! 

How long does it take? We need polynomially many calls to 𝐵, each 
requires polynomially many calls to 𝐶. That’s still polynomial. Similarly 
running time is polynomial times a polynomial, so a polynomial.

Transform 

Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform 

Output

Transform 

Input

Algorithm for 𝐶

Transform 

Output

Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶



Two Uses of Reductions

𝐴 ≤ 𝐵

If I know 𝐵 is not hard [I have an algorithm for it] then 𝐴 is also not hard.

This is how you’re used to using reductions

𝐴 ≤ 𝐵

If I know 𝐴 is hard, then 𝐵 also must be hard.

contrapositive of the last statement; the way we’ve used them this week.



Be careful with your input

The definitions of both P and NP refer to the “size” of the input.

What does “size” mean?

The set of all decision problems that have an algorithm that runs in 

time 𝑂 𝑛𝑘 for some constant 𝑘 (on input of size 𝑛).

P (stands for “Polynomial”)

The set of all decision problems such that for every YES-instance (of size 𝑛), there is a 

certificate (of size 𝑂(𝑛𝑘)) for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)



“Size”

“Size” is “number of bits used to represent the input.”

But I’ve never told you how to represent anything…

Normally all (reasonable) representations give you the same behavior.
Whether you represent a graph with 

an adjacency list: 𝑂(𝑚 + 𝑛) bits

A less efficient adjacency list: still 𝑂 𝑚 + 𝑛 bits

An adjacency matrix: 𝑂(𝑛2) bits

Your 𝑂(𝑚5𝑛13) algorithm is still polynomial time.



“Size”

Normally all (reasonable) representations give you the same behavior.

But occasionally it really matters. 

The most common time where it matters is when (potentially very large) 
integers are a part of the input.

Consider the following problem:

PRIMES (on input 𝑛, 𝑛 represented in binary, return true if 𝑛 is prime)

Your algorithm? Trial division (is it divisible by 2, 3, 4, 5,…)

What’s the running time? Is it polynomial?



“PRIME

Trial division:

There are like 𝑛 divisions to try.

Division? It’s not a constant anymore! 𝑛 is too big! It isn’t an int, it’s an 
arbitrarily large integer.
Repeated subtraction will work though

We’re just trying to check if it’s polynomial. We don’t need the fastest algorithm.

So 𝑂( 𝑛) divisions, each taking 𝑂(𝑛𝑘) time, where 𝑘 is a constant.

Sounds polynomial to me, right?



Representing an integer

We are supposed to be looking at the running time based on the size of 
the input.

How many bits does it take to represent the number 𝑛?

What if 𝑛 is 25?



Representing an integer

We are supposed to be looking at the running time based on the size of 
the input.

How many bits does it take to represent the number 𝑛?

What if 𝑛 is 25?

Only 6 bits! 1000002

In general it’s Θ(log 𝑛) bits.

So is 𝑛 ⋅ 𝑛𝑘 polynomial time?

No! It’s exponential.

Side note: 

There is a polynomial time algorithm for 

PRIMES. That is, a Θ(log𝑘 𝑛) algorithm for 

telling whether 𝑛 is prime. 

It uses some fancy number theory and 

modular arithmetic.



Knapsack

On HW5, you solved (a non-decision-version of) the knapsack problem.

Input: A list of 𝑛 objects (plants) of value 𝑣𝑖 and weight 𝑤𝑖 , 
a max weight 𝑊, a target value 𝑇.

Output: true if there is a set of objects of total value 𝑇 (or more) of 
weight at most 𝑊.

Running time: Θ(𝑊𝑛)

What’s the input size?

𝑂(𝑛 [log max 𝑣𝑖 + log(max𝑤𝑖)] + log 𝑊 + log(𝑇))



Knapsack

Running time: Θ(𝑊𝑛)

Input size?

𝑂(𝑛 [log max 𝑣𝑖 + log(max𝑤𝑖)] + log 𝑊 + log(𝑇))

That isn’t a polynomial time algorithm. 



Weakly NP-hard

You might have heard (in 332 or on Wikipedia) that Knapsack is an NP-
hard problem. It is…but that’s very dependent on the fact that it takes 
log(𝑊) bits to represent 𝑊.

It’s only NP-hard if you represent the input in the usual way.

If you made the input length O(𝑛 +𝑊) you’d have a polynomial time 
algorithm.
The different input gives you a different problem! And the other one isn’t known to 
be NP-hard.

If changing the representation of numbers from binary to unary makes 
the problem not NP-hard anymore, we call it weakly NP-hard.



Takeaways

Be careful when deciding if an algorithm shows a problem is in P.

Be sure you’ve accounted for the fact that numbers are in binary.

Some problems have algorithms that are polynomial in variables of 
interest but not in the size of the input
P vs. NP asks about the size of the input.

But you as an algorithm designer probably care about variables of interest.

If you see “𝐴 is NP-hard” and you think you have a polynomial-time 
algorithm for 𝐴, double check you understand the representation that 
was used to prove the problem is hard.



The problem B is NP-hard if

for all problems A in NP, A reduces to B. 

NP-hard

The problem B is NP-complete if B is in NP

and B is NP-hard

NP-Complete

The set of all decision problems that have an algorithm that runs in 

time 𝑂 𝑛𝑘 for some constant 𝑘 (on input of size 𝑛).

P (stands for “Polynomial”)

The set of all decision problems such that for every YES-instance (of size 𝑛), there is a 

certificate (of size 𝑂(𝑛𝑘)) for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)


