
More Reductions CSE 421 Autumn 22

Lecture 26



Today

Some more context on P, NP, etc.

When you suspect your problem is NP-hard, how do you prove it?



A Formal Definition

We need a formal definition of a reduction.

We will say “𝐴 reduces to 𝐵 in polynomial time” (or “𝐴 is polynomial 
time reducible to 𝐵” or "𝐴 reduces to 𝐵” or “𝐴 ≤𝑃 𝐵” or “𝐴 ≤ 𝐵”) if:

There is an algorithm to solve problem 𝐴, which, if given access to a 
library function for solving problem 𝐵,
Calls the library at most polynomially-many times

Takes at most polynomial-time otherwise excluding the calls to the library.



A note on ≤𝑃

Let 𝐴, 𝐵 be the decision versions of any problems we’ve solved this 
quarter (2-color, MST, is there a stable matching, is there a flow…)

𝐴 ≤𝑃 𝐵 and 𝐵 ≤𝑃 𝐴.

So they’re all “equal” in difficulty.

≤𝑃 is a very “coarse” definition of difficulty. 
Only enough to (maybe) separate NP-hard problems from problems in 𝑃. 

It won’t tell you the difference between a problem that can be solved in Θ(𝑛2) and 
one that can be solved in Θ(𝑛) or Θ 𝑛100 .



NP

The set of all decision problems such that for every YES-instance (of size 𝑛), there is a 

certificate (of size 𝑂(𝑛𝑘)) for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)

A “verifier” takes in: an instance of the NP problem, and a “proof”

And returns “true” if it received a valid proof that the instance is a YES instance, and 

“false” if it did not receive a valid proof 

NP problems have “verifiers” that run in polynomial time. 

Do they have solvers that run in polynomial time? The definition doesn’t say.

Our second set of problems have the property that “I’ll know it when I see it”

We’re looking for something, and if someone shows it to me, we can recognize it 

quickly (it just might be hard to find)



The problem B is NP-hard if

for all problems A in NP, A reduces to B. 

NP-hard

The problem B is NP-complete if B is in NP

and B is NP-hard

NP-Complete

The set of all decision problems that have an algorithm that runs in 

time 𝑂 𝑛𝑘 for some constant 𝑘 (on input of size 𝑛).

P (stands for “Polynomial”)

The set of all decision problems such that for every YES-instance (of size 𝑛), there is a 

certificate (of size 𝑂(𝑛𝑘)) for that instance which can be verified in polynomial time.

NP (stands for “nondeterministic polynomial”)



Why is it called NP?

You’ve seen nondeterministic computation before.

Way back in 311.

What do verifiers have to do with…anything?

NFAs would “magically” decide among a set of valid transitions.

Always choosing one that would lead to an accept state (if such a 

transition exists).



An NFA and a DFA for the language 

“binary strings with a 1 in the 3rd position from the end.”

From Kevin & Paul’s 311 Lecture 23.



Nondeterminism

What would a nondeterministic computer look like?

It can run all the usual commands,

But it can also magically (i.e. nondeterministically) decide to set any bit 
of memory to 0 or 1.

Always choosing 0 or 1 to cause the computer to output YES, 

(if such a choice exists).

The really formal definitions 

(take 431) use Turing machines.



If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic 
computer to:

Solve 2-COLOR?

Solve 3-COLOR?



If we had a nondeterministic computer…

Can you think of a polynomial time algorithm on a nondeterministic 
computer to:

Solve 2-COLOR?
Just run our regular deterministic polynomial time algorithm

Or nondeterministically guess colors, output if they work.

Solve 3-COLOR?
Nondeterministically guess colors, output if they work.

The pattern? Nondeterministically guess the certificate! Then verify that 
it works. A nondeterministic computer can solve a problem in NP if and 
only if a regular computer can verify a given certificate.



Analogue of NFA/DFA equivalence

You showed in 311 that the set of languages decided by NFAs and DFAs 
were the same.

I.e. NFAs didn’t let you solve more problems than DFAs.

But it did sometimes make the process a lot easier.

There are languages such that the best DFA is exponentially larger than 
the best NFA. (like the one from a few slides ago).

P vs. NP is an analogous question. Does non-determinism let us use 
exponentially fewer resources to solve some problems?



Why is being NP-hard/-complete interesting?

Let 𝐵 be an NP-hard problem. Suppose you found a polynomial time 
algorithm for 𝐵. Why is that interesting?

You now have for free a polynomial time algorithm for every problem in 
NP. (if 𝐴 is in NP, then 𝐴 ≤ 𝐵. So plug in your algorithm for 𝐵!)

So 𝑃 = 𝑁𝑃. (if you find a polynomial time algorithm for an NP-hard 
problem).

On the other hand, if any problem in 𝑁𝑃 is not in 𝑃 (any doesn’t have a 
polynomial time algorithm), then no NP-complete problem is in 𝑃.



What The World Looks Like (We Think)

PP

Short Paths, 

Light Spanning 

Tree, 2-COLOR

NP-Complete

NP-hard

Halting Problem

nxn chess 

3-COLOR, TSP

Long PathNP



What The World Looks Like (If P=NP)

PP

Short Paths, Light 

Spanning Tree, 2-SAT

TSP, 3-SAT, Long Paths

Still hard:

nxn chess

Still impossible:

Halting Problem



NP-Completeness

An NP-complete problem does exist!

3-SAT is NP-complete 

Cook-Levin Theorem (1971)

This sentence (and the proof of it) won Cook the Turing Award.



What’s 3-SAT?

Input: A list of Boolean variables 𝑥1, … , 𝑥𝑛

An expression in Conjunctive Normal Form, where each clause has 
exactly 3 literals.
Something like:

𝑧𝑖 ∨ 𝑧𝑗 ∨ 𝑧𝑘 ∧ 𝑧𝑖 ∨ 𝑧ℓ ∨ 𝑧𝑎 ∧ ⋯∧ 𝑧𝑎 ∨ 𝑧𝑏 ∨ 𝑧𝑐
Where 𝑧 is a “literal” a variable or the negation of a variable (𝑥𝑖 , ¬𝑥𝑗 , etc.).

Output: true if there is a setting of the variables where the expression evaluates to 
true, false otherwise.

Why is it called 3-SAT? 3 because you have 3 literals per clause
SAT is short for “satisfiability” can you satisfy all of the constraints?

“AND” of “ORs”

∧ outside parens

∨ inside parens

One of the 

subexpressions 

inside parens



Really? All of them?

The idea that there is an NP-complete problem might be surprising.

Every problem in NP reduces to it? All of them? Like no exceptions?

Yes! Really all of them!



Really? All of them?

The idea that there is an NP-complete problem might be surprising.

Every problem in NP reduces to it? All of them? Like no exceptions?

The proof is very fun, but also very a-full-lecture-long (take 431).

Hand-wavy intuition:

1. Let 𝐴 ∈ 𝑁𝑃, then it has a verifier that is “checking for something” in 
the certificate.

2. “checking for something” can be broken down into a bunch of tiny 
steps (because code can be broken down to tiny pieces).

3. each of those tiny pieces can be built up to a giant SAT expression 
(where the variables are the certificate).



Ok, so what?

If anyone ever asks me to solve 3-SAT exactly in polynomial time, I’ll say 
no…

How often does that happen? How does this help?

Suppose you’re interested in the problem 𝐵. You’ve tried to design a 
polynomial time algorithm; haven’t succeeded yet…you start to wonder 
if it’s possible at all…or maybe 𝐵 is also 𝑁𝑃-hard…

Well if you can show 3-SAT ≤𝑃 𝐵 then 𝐵 is NP-hard too!

𝐴 ≤𝑃3-SAT and 3-SAT ≤𝑃 𝐵֜𝐴 ≤𝑃 𝐵 (≤𝑃 is transitive)



Which Direction?

To show 𝐵 is NP-hard

How do you remember which direction?

The core idea of an NP-completeness reduction is a proof by 
contradiction:

Suppose, for the sake of contradiction, there were a polynomial time 
algorithm for 𝐵. But then if there were I could use that to design a 
polynomial time algorithm for problem 𝐴.

But we really, really, really don’t think there’s a polynomial time 
algorithm for problem 𝐴. So we should really, really, really think there 
isn’t one for 𝐵 either!



Let’s Show a problem is NP-hard.

Once we have one NP-complete problem, the process gets a lot easier.

3-SAT is 𝑁𝑃-complete. Prove that 3-COLOR is 𝑁𝑃-hard.

Input: An undirected graph 𝐺.

Output: True if 𝐺 can be 3-colored (each vertex red, blue, green and no 
edge has same-colored endpoints); false otherwise



To show 3-color is NP-complete

What do we need to show?

To show our new problem is NP-complete
A reduction from a known NP-hard problem to our new problem

That our new problem is in NP itself

(To show our new problems is NP-hard, just do the first step).

We need to show:



To show 3-color is NP-complete

What do we need to show?

To show our new problem is NP-complete
A reduction from a known NP-hard problem to our new problem

That our new problem is in NP itself

(To show our new problems is NP-hard, just do the first step).

We need to show:

3-color is in NP; 3-SAT ≤𝑃 3-COLOR



To show 3-color is NP-complete

We need to show:

3-color is in NP; 3-SAT ≤𝑃 3-COLOR

3-color is in NP (the certificate is the assignment of vertices to colors; a 
linear-time BFS can verify if the coloring is correct).

Get the direction of the reduction right! Double-check it!

The other reduction does exist! (because 3-SAT is NP-complete). You 
won’t notice until it’s too late. Check at the beginning!



This is a big claim!

3-SAT and 3-coloring aren’t all that similar

They both have the number 3, I guess…

In 3-SAT we assign variables to true and false.

In 3-COLOR we assign vertices to red, blue, or green.

How could we do that?



Idea

Need to turn a 3-SAT instance into a 3-COLOR instance

(The reduction has access to a library for 3-COLOR)

And need to use 3-COLOR library to answer for the 3-SAT instance.

We’ll want an assignment of variables to correspond to a coloring

So have a vertex for each variable so that you can color the graph iff
you can make the expression true; colors should correspond to values 
(True, False, and…dummy?)

We’ll tweak this later, but get this intuition first.



Idea

We’re going to need little subgraphs that make this happen.

We call them “gadgets.”



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

x1 ¬x1

D

x2 ¬𝑥2 𝑥3 ¬𝑥3



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

𝑥1 ¬𝑥1

D

𝑥2 ¬𝑥2 𝑥3 ¬𝑥3

Interpret coloring as:

𝑥1 is false; 𝑥2 is true;

𝑥3 is false



Gadget 1

Make the variables true and false.

Vertex for each literal (every vertex and its negation) attach 𝑥 to ¬𝑥
Need them to be different colors

And attach both to a shared vertex (the “dummy” color)

𝑥1 ¬𝑥1

D

𝑥2 ¬𝑥2 𝑥3 ¬𝑥3

Interpret coloring as:

𝑥1 is false; 𝑥2 is false;

𝑥3 is false



Are We Done?

We can interpret a 3-coloring as a setting of the variables!

But, we’re not done. The goal is to say the 3-coloring corresponds to a 
satisfying assignment. One that makes the CNF expression true!

Need to handle each clause



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Bottom row:
T and F are new 

vertices, colored 

green and red. 

Others are already-

made literal vertices



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false)



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false).

Next two must be

blue



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

Suppose bottom row 

is all red (clause is 

false).

Next two must be

blue; then green;

Then uh-oh



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If all literals are false, 

graph can’t be 3-

colored.



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If 𝑥1 is true…

We can complete the

coloring!



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If ¬𝑥2 is true…

We can complete the

coloring!

Top vertex is

opposite of ¬𝑥3



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

If ¬𝑥3 is true…

We can complete the

coloring!



Gadget 2 (clauses)

(𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3)

𝑥1 ¬𝑥2 ¬𝑥3
T F

𝑥1

𝑥1

𝑥1

This tricky little graph 

can be 3-colored iff

that clause evaluates 

to true.

The graph is 

colorable if and only 

if at least one of the 

three literals is green.



Putting it together

Make a vertex for every literal

Make one of those subgraphs for every clause

Make T,F, Dummy vertices and connect them as shown. 

That’s your graph

D

T F

𝑥1 ¬𝑥1 𝑥𝑛 ¬𝑥𝑛

𝐶𝑚𝐶1

…

…



Putting it together

If there is a satisfying assignment, then the graph is 3-colorable.



Putting it together

If there is a satisfying assignment, then the graph is 3-colorable.

Consider a satisfying assignment. Assign all true literals and T to be 
green, assign all false literals and F to be red, assign D to be blue.

Now consider the clause gadgets. We saw that if at least one literal 
vertex is green, we can color the remaining vertices via case analysis. 
Since we have a satisfying assignment, each clause gadget has a green 
colored node, so we can complete the coloring. This is a 3-coloring of 
the full graph.



Putting it together

If the graph is 3-colorable, then there must be a satisfying assignment



Putting it together

If the graph is 3-colorable, then there must be a satisfying assignment.

Consider a valid 3-coloring. The three vertices T,F,D all must have 
different colors (since they are all adjacent). Call T’s color “green”, F’s 
“red” and D’s “blue.” Since we put edges between 𝑥𝑖 and ¬𝑥𝑖, literals 
always get opposite colors, and since all are attached to D each gets red 
or green. Observe that every gadget is properly colored (as we colored 
the full graph), thus by our case analysis, each gadget must have at least 
one green vertex among the three literals. Set the variables to be true if 
their vertex is green and false if red (since we put edges between 
opposites this is consistent). Since each clause has a green vertex, every 
clause has a true literal and the assignment is satisfying for the 3-SAT 
instance.



Putting it together

The graph can be constructed in polynomial time.

There are a constant number of vertices per clause or variable of the 
SAT instance, and it’s a mechanical process to create the edges, so the 
total time is polynomial. We call the library only once, which is 
polynomial as well.



More Reduction Facts



I have a problem

My problem 𝐶 is too difficult to solve (at least for me). 

So difficult, it’s probably NP-hard. How do I show it?

What does it mean to be NP-hard? 

We need to be able to reduce any problem 𝐴 in NP to 𝐶.

Let’s choose 𝐵 to be a known NP-hard problem. Since 𝐵 is known to be 
NP-hard, 𝐴 ≤ 𝐵 for every possible 𝐴. So if we show 𝐵 ≤ 𝐶 too 
then 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶 so every NP problem reduces to 𝐶!



Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output

Algorithm to solve 𝐵



Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶

Transform Input

Solver for 𝐴

Algorithm to solve 𝐵

Transform Output

Transform Input

Algorithm for 𝐶

Transform Output

𝐵 ≤ 𝐶



Why does it work? Because our reductions work! 

How long does it take? We need polynomially many calls to 𝐵, each 
requires polynomially many calls to 𝐶. That’s still polynomial. Similarly 
running time is polynomial times a polynomial, so a polynomial.

Transform 

Input

Solver for 𝐴

Algorithm to solve 𝐵

𝐵 ≤ 𝐶

Transform 

Output

Transform 

Input

Algorithm for 𝐶

Transform 

Output

Is the implication true? 𝐴 ≤ 𝐵 ≤ 𝐶 → 𝐴 ≤ 𝐶



Said Differently

𝐴 ≤ 𝐵

If I know 𝐵 is not hard [I have an algorithm for it] then 𝐴 is also not hard.

This is how we usually use reductions

𝐴 ≤ 𝐵

If I know 𝐴 is hard, then 𝐵 also must be hard.

(contrapositive of the last statement)



Want to prove your problem is hard?

To show 𝐵 is hard, 

Reduce FROM the known hard problem TO the problem you care about

A reduction From an NP-hard problem 𝐴 to 𝐵, shows 𝐵 is also NP-hard.


