Pseudocode

```
minCut = infinity

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])
  while ( // there are more than two vertices
      edge -> Choose edge randomly from the list
      ContractEdge(edge)
  Return number of edges between the vertices

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second
vertex
      Create new vertex: SuperNode
      Reattach all edges from e.u and e.v to SuperNode
      Delete e
```

Run Karger's Algorithm yourself: Run-Through

Edges:

- 1 sv
- 2- vx
- 3- sx
- 4 su
- 5 uw
- 6 wy
- 7 yr
- 8 rw
- 9 uy
- 10 ur

Random Sequence of Numbers:

Run Karger's Algorithm yourself: Run-Through

Edges:

- 1 sv
- 2- vx
- 3- sx
- 4 su
- 5 uw
- 6 wy
- 7 vr
- 8 rw
- 9 uy
- 10 ur

Random Sequence of Numbers:

Probability that output isn't min-cut

- Fact 1: If there are n vertices, the expected value of a vertex's degree is 2|E|/n
- Fact 2: Size of min-cut is upper-bounded by 2|E|/n
- Fact 3: A randomly picked edge crosses the min cut with probability at most 2/n
 - o Proof: Work on this with the people around you