
Probabilistic Min-Cut CSE 421 Fall 22
Lecture 24

Probabilistic Algorithms 101

What is a Probabilistic Algorithm

● Deterministic algorithms take input and produce some deterministic
output

● Probabilistic algorithms take input and a source of random bits and
make random choices during execution, so output is
non-deterministic

Motivation for Probabilistic Algorithms

● Probabilistic algorithm may be more faster or more simple (or
both)

● In some cases, the probabilistic algorithm is faster or more
space efficient than the best-known deterministic algorithm

● For some use cases, if we don’t care about “the best” answer
and we’re willing to tolerate some error in exchange for the
above benefits (take CSE 422 and CSE 521 to learn more)

Today’s Topic

● Finding the minimum cut of an undirected unweighted graph
using a probabilistic algorithm

● What is a min cut
● Key idea of algorithm [Edge contraction]
● Correctness

Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets
● The size of a cut is the number of edges in the graph with one

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets
● The size of a cut is the number of edges in the graph with one

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets
● The size of a cut is the number of edges in the graph with one

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

● Cut corresponds to ({s,u}, {v,x,w,r,y,z})
● The size of the cut is 4 (since the

edges spanning the cut are s-v, s-x,
u-v, u-x)

Today’s Topic
● A cut is defined as a partition of vertices into two disjoint sets
● The size of a cut is the number of edges in the graph with one

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets
● The size of a cut is the number of edges in the graph with one

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

● Cut corresponds to ({s,v,u,x},
{w,r,y,z})

● The size of the cut is 2 (since the
edges spanning the cut are v-w,
x-y)

Karger’s Min Cut Algorithm

Intuition for Contractions

● The min-cut corresponds to the area in the graph that is “least
dense” with respect to the number of edges

● If we can minimize the number of edges while ensuring that the
“most dense” areas stay the most dense, we are able to
transform this graph to a smaller graph (and smaller graphs are
easier to deal with!)

What is a Contraction

● Contractions: Merging the endpoints (u,v) of an edge into a
supernode, reattach edges that were attached to u,v to the
supernode

● We allow multi-edges but do not allow self-loops

y z y,z

Contraction Example

 rs v w

u x y t

Contraction Example

 rs v w

u x y t

Contraction Example

r

s

v w

u

x y t

Contraction Example

rv w

x y t

s,u

Algorithm Basics

● Choose an edge uniformly at random to contract

● Repeat this until you have only two supernodes, these two

supernodes represent the two halves of a cut (if we’re lucky this

is the minimum cut)

● The size of the cut is the number of edges between the two

supernodes

Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])
while (// there are more than two vertices

edge -> Choose edge randomly from the list
ContractEdge(edge)

Return number of edges between the vertices

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v =
second vertex

Create new vertex: SuperNode
Reattach all edges from e.u and e.v to SuperNode
Delete e

Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers:

 rs v w

u x y t

Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers: 2

 rs v w

u x y t

Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers: 2

rv w

x y t

s,u

Karger’s Algorithm Example

Random Sequence of Numbers: 2

rv w

x y t

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10

rv w

x y t

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

w,t,r

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

w,t,r

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

v

x y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

v,x

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

y

s,u

w,t,r

v,x

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtr)
● 8 - (vx)y
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14

y

s,u

w,t,r

v,x

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtr)
● 8 - (vx)y
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14

s,u
w,t,r,y

v,x

Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5

s,u
w,t,r,y

v,x

Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5

w,t,r,yv,x,u,s

Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5

● Since we’re left with
only two nodes, we
terminate the edge
deletion process and
count the number of
edges between them.

● There are two edges so
we conclude that the a
cut is 2 and the min-cut
may be 2

w,t,r,yv,x,u,s

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14, 5

● This corresponds to
the cut we saw
earlier

w,t,r,yv,x,u,s

rs v w

u x y z

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14, 5

● This corresponds to
the cut we saw
earlier

w,t,r,yv,x,u,s

rs v w

u x y z

What if randomness
didn’t work in our

favor?

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14

s,u
w,t,r,y

v,x

Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

s,u
w,t,r,y

v,x

Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

s,u w,t,r,y,v,x

Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

● Since we’re left with only
two nodes, we terminate
the edge deletion process
and count the number of
edges between them.

● There are four edges so
we conclude that the a
cut is 4 and the min-cut
may be 4

s,u w,t,r,y,v,x

Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 - (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

● Corresponds to the given cut
● Since we’ve seen an iteration of this

algorithm with a smaller cut, we
know 4 is not the minimum, but we
don’t know if 2 is the minimum

rs v w

u x y z

s,u w,t,r,y,v,x

Intuition

● When we pick a random edge, it’s more likely to come from
somewhere in the graph with more edges.

● After every contraction, the min-cut stays minimum
● Since the min-cut is minimum, it’s smaller than all possible other

cuts, so probability of contracting it is smaller than contracting
any other cut

● Maybe if we’re unlucky in one iteration, we can run this algorithm
enough times to ensure that there’s some iteration in which we’re
lucky

Run Karger’s Algorithm yourself
int FindMinCut(Edge[1,...,e],
Vertex[1,...,v])

while (// there are more than two
vertices

edge -> Choose edge randomly from
the list

ContractEdge(edge)

Return number of edges between the
vertices

void ContractEdge(Edge e) // e.u = one
vertex of the edge, e.v = second vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v
to SuperNode

Delete e

r

s vw

u

x

y

Run Karger’s Algorithm yourself
int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while (// there are more than two vertices

edge -> Choose edge randomly from the
list

ContractEdge(edge)

Return number of edges between the vertices

void ContractEdge(Edge e) // e.u = one vertex of
the edge, e.v = second vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to
SuperNode

Delete er

s vw

u

x

y

● Work on running Karger’s algorithm on this
graph

● Use the dice, or phone/computer or brain to
generate random numbers

● Compare your cut with your neighbors

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - wy
● 7 - yr
● 8 - rw
● 9 - uy
● 10 - ur

r

s vw

u

x

y

Random Sequence of Numbers:

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - wy
● 7 - yr
● 8 - rw
● 9 - uy
● 10 - ur

r

s vw

u

x

y

Random Sequence of Numbers: 7,

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s vw

u

x

Random Sequence of Numbers: 7,

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s vw

u

x

Random Sequence of Numbers: 7, 1

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s,vw

u

x

Random Sequence of Numbers: 7, 1

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s,vw

u

x

Random Sequence of Numbers: 7, 1, 6

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w

s,v

u

x

Random Sequence of Numbers: 7, 1, 6

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w

s,v

u

x

Random Sequence of Numbers: 7, 1, 6, 9

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v

x

Random Sequence of Numbers: 7, 1, 6, 9

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v

x

Random Sequence of Numbers: 7, 1, 6, 9, 3

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v,x

Random Sequence of Numbers: 7, 1, 6, 9, 3

Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v,x

Random Sequence of Numbers: 7, 1, 6, 9, 3

Since there are two nodes,
we terminate the algorithm
since we have found a
possible cut
The size of the cut is 1 so it
must be the minimum cut (if
we were not lucky, we may
have found a larger cut

Karger’s Min Cut Analysis

Analyzing Probabilistic Algorithms

● Whenever we analyze deterministic algorithms, we argue that
the output is necessarily correct

● With probabilistic algorithms, since we’re not guaranteed the
same output after multiple iterations, this type of analysis fails

● Instead, for probabilistic algorithms, we analyze the
probability that the output is correct

Analyzing Probabilistic Algorithms

● Whenever we analyze deterministic algorithms, we argue that
the output is necessarily correct

● With probabilistic algorithms, since we’re not guaranteed the
same output after multiple iterations, this type of analysis fails

● Instead, for probabilistic algorithms, we analyze the
probability that the output is correct

In the next section, we will aim to show that the probability of
contracting an edge in some fixed min-cut is 2/n (where n is the
number of vertices)

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) = 2|E|

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) = 2|E|

Proof: We count every edge twice, once from one vertex (u), once
from another vertex (v).
Since every edge has two vertices, we know we double count all the
edges exactly twice.

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) =
2|E|

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) =
2|E|

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = Pr(X = u)d(u)

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) =
2|E|

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = Pr(X = u)d(u)

 = (1/n) d(u)

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) =
2|E|

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = Pr(X = u)d(u)

 = (1/n) d(u)

= (1/n) d(u)

Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then d(u) =
2|E|

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = Pr(X = u)d(u)

 = (1/n) d(u)

= (1/n) d(u) = (1/n)2|E| = 2|E|/n

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = E [1[u is endpoint of e]]

u

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = E [1[u is endpoint of e]]

 = E [1[u is endpoint of e]]

u

u

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = E [1[u is endpoint of e]]

 = E [1[u is endpoint of e]]

= P[u is endpoint of e]

u

u

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n
○ Proof: E[d(u)] = E [1[u is endpoint of e]]

 = E [1[u is endpoint of e]]

= P[u is endpoint of e]

= 2/n = 2|E|/n

u

u

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of

the n-1 vertices

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of

the n-1 vertices

Example: 2*10/7 = 2.85…
r

s
vw

u
x

y

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of

the n-1 vertices

Example: 2*10/7 = 2.85…
r

s vw

u
x

y

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of

the n-1 vertices
○ The expected number of edges

crossing this cut is 2|E|/n (Fact 1)

Example: 2*10/7 = 2.85… r

s vw

u
x

y

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of

the n-1 vertices
○ The expected number of edges

crossing this cut is 2|E|/n (Fact 1)
○ Thus, since we know such a cut

always exists, the min cut is
no larger than 2|E|/n

r

s vw

u
x

y

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with

probability at most 2/n

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with

probability at most 2/n
○ Proof: Work on this with the people around you

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with

probability at most 2/n
○ Proof:

Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with

probability at most 2/n
○ Proof: Since we start off with |E| edges to choose to contract

and at most 2|E|/n (Fact 3) are in the min-cut, then we
choose a min-cut edge with probability (2|E|/n)/(|E|) = 2/n

Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were

contracted before we were left with only 2 supernodes)

Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were

contracted before we were left with only 2 supernodes)

>=()()()...()()

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3

Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were

contracted before we were left with only 2 supernodes)

>=()()()...()()

= ()()()...()()

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3
n-2

n

n-3

n-1

n-4

n-2

2

4

1

3

Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were

contracted before we were left with only 2 supernodes)

>=()()()...()()

= ()()()...... ()()

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3
n-2

n

n-3

n-1

n-4

n-2

2

4

1

3

Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were

contracted before we were left with only 2 supernodes)

>=()()()...()()

= ()()()...... ()() =

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3
n-2

n

n-3

n-1

n-4

n-2

2

4

1

3

2

n(n-1)

Karger’s Algorithm Analysis

● We know that Karger’s succeeds with probability at least
● If we run Karger’s twice then the probability of success is:

Similarly, running Karger ‘k’ times yields a success probability of:

Karger’s Algorithm Analysis

● We can use the approximation that 1-p is about
● We note that if we run this algorithm times then

Karger’s Algorithm Analysis

● We can use the approximation that 1-p is about
● We note that if we run this algorithm times then

● To get this probability of success, we need to run this ALG
 times, but we note we go through ‘m’ edges meaning the runtime
of the ALG is O() or O(n²mlog(n))

Karger-Stein

Intuition

● In the beginning, low chance of contracting a min-cut edge

● As we contract more edges, the ratio of “min cut edges” to “non

min cut edges” becomes higher

● However, as we contract more edges, there are less total edges

● Perhaps instead of contracting all the way, we choose some

point where we stop contracting and just process the remaining

graph more carefully

Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while (// there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e

Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while (// there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e

If we go through the
math, we contract
edges until the
probability of
contracting a min cut
edge is greater than 1/2

Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while (// there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e

If we go through the
math, we contract
edges until the
probability of
contracting a min cut
edge is greater than 1/2

Here, the probability of returning
a min cut is 1/log(n) (the proof
involves some induction)

Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while (// there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e

If we go through the
math, we contract
edges until the
probability of
contracting a min cut
edge is greater than 1/2

Here, the probability of returning
a min cut is 1/log(n) (the proof
involves some induction)

To achieve an error probability of
O(1/n) we need to run this
algorithm log²(n) amount of times
for a total runtime of O(n²log³(n))

Karger-Stein: Termination Vertex

● Denote ‘m’ as the vertex at which we terminate the contraction
process (i.e. after contraction of this vertex, the probability of
contracting a min-cut edge becomes more than ½). We see:

Thus we terminate the contraction process at the n/sqrt(2) ‘th
vertex. (To be more exact, you could terminate at n/sqrt(2) , but the
asymptotic arguments are identical in either case, and for simplicity
we’ll use the former)

Karger-Stein: Runtime

● We note that first we need to perform n-n/sqrt(2) contractions and then perform
two iterations of Min-Cut on the remaining graph with n/sqrt(2) nodes .

● Using an adjacency list implementation, the contractions take O(n²) to perform
● From here we need to perform this algorithm on the smaller graph yielding the

following run-time

● From here, we use Master’s Theorem to yield a runtime of O(n²log(n))

Karger-Stein: Correctness

● We argue that probability of success is dependent on getting at least one success
in one of these smaller graphs, which has a ½ chance of not having the min-cut
already contracted (this argument comes from the fact that the last contracted
edge ensures that further contracted edges have that probability to be a min-cut
edge)

● With this argument, we can yield the following recurrence:

An inductive argument shows that P(n) >= 1/(n+2), and we finish with the argument
that 1/O(n) >= O(log n). Thus, we need at least log(n) to get a constant probability of
success and log(n)² iterations to get a 1-1/poly(n) probability of success , yielding a
O(n²log³(n)) runtime

References

● Here are some of the notes I consulted and good resources to broaden your
understanding of these algorithms
○ http://www.cs.toronto.edu/~anikolov/CSC473W20/Lectures/Karger-Stein.p

df
○ https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-1.pdf
○ https://www.cs.princeton.edu/courses/archive/fall16/cos521/Lectures/lec2.p

df

http://www.cs.toronto.edu/~anikolov/CSC473W20/Lectures/Karger-Stein.pdf
http://www.cs.toronto.edu/~anikolov/CSC473W20/Lectures/Karger-Stein.pdf
https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-1.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos521/Lectures/lec2.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos521/Lectures/lec2.pdf

