
Probabilistic Min-Cut CSE 421 Fall 22
Lecture 24



Probabilistic Algorithms 101



What is a Probabilistic Algorithm

● Deterministic algorithms take input and produce some deterministic 
output

● Probabilistic algorithms take input and a source of random bits and 
make random choices during execution, so output is 
non-deterministic



Motivation for Probabilistic Algorithms

● Probabilistic algorithm may be more faster or more simple (or 
both)

● In some cases, the probabilistic algorithm is faster or more 
space efficient than the best-known deterministic algorithm 

● For some use cases, if we don’t care about “the best” answer 
and we’re willing to tolerate some error in exchange for the 
above benefits (take CSE 422 and CSE 521 to learn more)



Today’s Topic

● Finding the minimum cut of an undirected unweighted graph 
using a probabilistic algorithm

● What is a min cut
● Key idea of algorithm [Edge contraction]
● Correctness



Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets 
● The size of a cut is the number of edges in the graph with one 

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges
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Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets 
● The size of a cut is the number of edges in the graph with one 

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

● Cut corresponds to ({s,u}, {v,x,w,r,y,z})
● The size of the cut is 4 (since the 

edges spanning the cut are s-v, s-x, 
u-v, u-x)
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● A cut is defined as a partition of vertices into two disjoint sets 
● The size of a cut is the number of edges in the graph with one 
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Today’s Topic

● A cut is defined as a partition of vertices into two disjoint sets 
● The size of a cut is the number of edges in the graph with one 

endpoint in each set spanning the cut
● The minimum cut is the minimum collection of such edges

rs v w

u x y z

● Cut corresponds to ({s,v,u,x}, 
{w,r,y,z})

● The size of the cut is 2 (since the 
edges spanning the cut are v-w, 
x-y)



Karger’s Min Cut Algorithm



Intuition for Contractions

● The min-cut corresponds to the area in the graph that is “least 
dense” with respect to the number of edges

● If we can minimize the number of edges while ensuring that the 
“most dense” areas stay the most dense, we are able to 
transform this graph to a smaller graph (and smaller graphs are 
easier to deal with!)



What is a Contraction

● Contractions: Merging the endpoints (u,v) of an edge into a 
supernode, reattach edges that were attached to u,v to the 
supernode 

● We allow multi-edges but do not allow self-loops

y z y,z



Contraction Example
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Contraction Example
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Contraction Example

rv w

x y t

s,u



Algorithm Basics

● Choose an edge uniformly at random to contract 

● Repeat this until you have only two supernodes, these two 

supernodes represent the two halves of a cut (if we’re lucky this 

is the minimum cut) 

● The size of the cut is the number of edges between the two 

supernodes 



Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])
while ( // there are more than two vertices

edge -> Choose edge randomly from the list
ContractEdge(edge)

Return number of edges between the vertices

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = 
second vertex

Create new vertex: SuperNode
Reattach all edges from e.u and e.v to SuperNode
Delete e



Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers: 

  rs v w

u x y t



Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers: 2 
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Karger’s Algorithm Example
Edges:
● 1 - sv
● 2- su
● 3- sx
● 4 - vx
● 5 - vu
● 6 - ux
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - ytRandom Sequence of Numbers: 2 

rv w

x y t

s,u



Karger’s Algorithm Example

Random Sequence of Numbers: 2 

rv w

x y t

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10 

rv w

x y t

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10 

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - vw
● 8 - xy
● 9 - wr
● 10 - wt
● 11 - wy
● 12 - ry
● 13 - rt
● 14 - yt



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10 

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

rv w,t

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

w,t,r



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wt)
● 8 - xy
● 9 - (wt)r
● 10 - wt
● 11 - (wt)y
● 12 - ry
● 13 - r(wt)
● 14 - y(wt)

w,t,r



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9

v

x y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

v

x y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

y

s,u

w,t,r

Edges:
● 1 - (us)v
● 2- su
● 3- (us)x
● 4 - vx
● 5 - v(us)
● 6 - (us)x
● 7 - v(wtr)
● 8 - xy
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)

v,x



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4

y

s,u

w,t,r

v,x

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtr)
● 8 - (vx)y
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14

y

s,u

w,t,r

v,x

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtr)
● 8 - (vx)y
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14 

s,u
w,t,r,y

v,x



Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5 

s,u
w,t,r,y

v,x



Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5 

w,t,r,yv,x,u,s



Karger’s Algorithm Example
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 5 

● Since we’re left with 
only two nodes, we 
terminate the edge 
deletion process and 
count the number of 
edges between them.

● There are two edges so 
we conclude that the a 
cut is 2 and the min-cut 
may be 2

w,t,r,yv,x,u,s



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14, 5 

● This corresponds to 
the cut we saw 
earlier

w,t,r,yv,x,u,s

rs v w

u x y z

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example

Random Sequence of Numbers: 2, 10, 9, 4, 14, 5 

● This corresponds to 
the cut we saw 
earlier

w,t,r,yv,x,u,s

rs v w

u x y z

What if randomness  
didn’t work in our  

favor?

Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vxus)(wtry)
● 8 - (vxus)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)



Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14 

s,u
w,t,r,y

v,x



Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

s,u
w,t,r,y

v,x



Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

s,u w,t,r,y,v,x



Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

● Since we’re left with only 
two nodes, we terminate 
the edge deletion process 
and count the number of 
edges between them.

● There are four edges so 
we conclude that the a 
cut is 4 and the min-cut 
may be 4

s,u w,t,r,y,v,x



Karger’s Algorithm Example 2
Edges:
● 1 - (us)(vx)
● 2- su
● 3- (us)(vx)
● 4 - vx
● 5 - (vx)(us)
● 6 - (us)(vx)
● 7 - (vx)(wtry)
● 8 - (vx)(wtry)
● 9 - (w,t)r
● 10 - wt
● 11 - (wtr)y
● 12 -  (wtr)y
● 13 - r(wt)
● 14 - y(wtr)Random Sequence of Numbers: 2, 10, 9, 4, 14, 8

● Corresponds to the given cut
● Since we’ve seen an iteration of this 

algorithm with a smaller cut, we 
know 4 is not the minimum, but we 
don’t know if 2 is the minimum

rs v w

u x y z

s,u w,t,r,y,v,x



Intuition

● When we pick a random edge, it’s more likely to come from 
somewhere in the graph with more edges. 

● After every contraction, the min-cut stays minimum
● Since the min-cut is minimum, it’s smaller than all possible other 

cuts, so probability of contracting it is smaller than contracting 
any other cut

● Maybe if we’re unlucky in one iteration, we can run this algorithm 
enough times to ensure that there’s some iteration in which we’re 
lucky 



Run Karger’s Algorithm yourself
int FindMinCut(Edge[1,...,e], 
Vertex[1,...,v])

while ( // there are more than two 
vertices

edge -> Choose edge randomly from 
the list

ContractEdge(edge)

Return number of edges between the 
vertices

void ContractEdge(Edge e) // e.u = one 
vertex of the edge, e.v = second vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v 
to SuperNode

Delete e

r

s vw

u

x

y



Run Karger’s Algorithm yourself
int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while ( // there are more than two vertices

edge -> Choose edge randomly from the 
list

ContractEdge(edge)

Return number of edges between the vertices

void ContractEdge(Edge e) // e.u = one vertex of 
the edge, e.v = second vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to 
SuperNode

Delete er

s vw

u

x

y

● Work on running Karger’s algorithm on this 
graph

● Use the dice, or phone/computer or brain to 
generate random numbers

● Compare your cut with your neighbors



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - wy
● 7 - yr
● 8 - rw
● 9 - uy
● 10 - ur

r

s vw

u

x

y

Random Sequence of Numbers:  



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - wy
● 7 - yr
● 8 - rw
● 9 - uy
● 10 - ur

r

s vw

u

x

y

Random Sequence of Numbers: 7, 



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s vw

u

x

Random Sequence of Numbers: 7, 



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- vx
● 3- sx
● 4 - su
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s vw

u

x

Random Sequence of Numbers: 7, 1



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s,vw

u

x

Random Sequence of Numbers: 7, 1



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - uw
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yr)
● 10 - u(yr)

y,r

s,vw

u

x

Random Sequence of Numbers: 7, 1, 6



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w

s,v

u

x

Random Sequence of Numbers: 7, 1, 6



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)u
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w

s,v

u

x

Random Sequence of Numbers: 7, 1, 6, 9



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v

x

Random Sequence of Numbers: 7, 1, 6, 9



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v

x

Random Sequence of Numbers: 7, 1, 6, 9, 3



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v,x

Random Sequence of Numbers: 7, 1, 6, 9, 3



Run Karger’s Algorithm yourself: Run-Through
Edges:
● 1 - sv
● 2- (sv)x
● 3- (sv)x
● 4 - (sv)(yrwu)
● 5 - u(yrw)
● 6 - w(yr)
● 7 - yr
● 8 - (yr)w
● 9 - u(yrw)
● 10 - u(yrw)

y,r,w,u

s,v,x

Random Sequence of Numbers: 7, 1, 6, 9, 3

Since there are two nodes, 
we terminate the algorithm 
since we have found a 
possible cut
The size of the cut is 1 so it 
must be the minimum cut (if 
we were not lucky, we may 
have found a larger cut



Karger’s Min Cut Analysis



Analyzing Probabilistic Algorithms

● Whenever we analyze deterministic algorithms, we argue that 
the output is necessarily correct

● With probabilistic algorithms, since we’re not guaranteed the 
same output after multiple iterations, this type of analysis fails

● Instead, for probabilistic algorithms, we analyze the 
probability that the output is correct



Analyzing Probabilistic Algorithms

● Whenever we analyze deterministic algorithms, we argue that 
the output is necessarily correct

● With probabilistic algorithms, since we’re not guaranteed the 
same output after multiple iterations, this type of analysis fails

● Instead, for probabilistic algorithms, we analyze the 
probability that the output is correct

In the next section, we will aim to show that the probability of 
contracting an edge in some fixed min-cut is 2/n (where n is the 
number of vertices)



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then       d(u) = 2|E|



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then       d(u) = 2|E|

Proof: We count every edge twice, once from one vertex (u), once 
from another vertex (v).
Since every edge has two vertices, we know we double count all the 
edges exactly twice.



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then      d(u) = 
2|E| 

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then      d(u) = 
2|E| 

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n
○ Proof: E[d(u)] =      Pr(X = u)d(u)



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then      d(u) = 
2|E| 

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n
○ Proof: E[d(u)] =      Pr(X = u)d(u)

                                 =      (1/n) d(u)



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then      d(u) = 
2|E| 

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n
○ Proof: E[d(u)] =      Pr(X = u)d(u)

                                 =      (1/n) d(u)

= (1/n)     d(u)



Probability that output isn’t min-cut

● Fact 0: If d(u) represents the degree of vertex u, then      d(u) = 
2|E| 

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n
○ Proof: E[d(u)] =      Pr(X = u)d(u)

                                 =      (1/n) d(u)

= (1/n)     d(u) = (1/n)2|E| = 2|E|/n
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○ Proof: E[d(u)] = E [      1[u is endpoint of e] ]

         =      E [ 1[u is endpoint of e] ]
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Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n
○ Proof: E[d(u)] = E [      1[u is endpoint of e] ]

         =      E [ 1[u is endpoint of e] ]

=      P[u is endpoint of e]

=       2/n = 2|E|/n
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Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of 

the n-1 vertices
○ The expected number of edges 

crossing this cut is 2|E|/n (Fact 1)

Example: 2*10/7 = 2.85… r
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Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
○ Proof: One valid cut is separating one vertex from the rest of 

the n-1 vertices
○ The expected number of edges 

crossing this cut is 2|E|/n (Fact 1)
○ Thus, since we know such a cut 

always exists, the min cut is 
no larger than 2|E|/n
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Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with 

probability at most 2/n



Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with 

probability at most 2/n
○ Proof: Work on this with the people around you



Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with 

probability at most 2/n
○ Proof: 



Probability that output isn’t min-cut

● Fact 1: If there are n vertices, the expected value of a vertex’s 
degree is 2|E|/n

● Fact 2: Size of min-cut is upper-bounded by 2|E|/n
● Fact 3: A randomly picked edge crosses the min cut with 

probability at most 2/n
○ Proof: Since we start off with |E| edges to choose to contract 

and at most 2|E|/n (Fact 3) are in the min-cut, then we 
choose a min-cut edge with probability (2|E|/n)/(|E|) = 2/n



Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long 
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were 

contracted before we were left with only 2 supernodes)



Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long 
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were 

contracted before we were left with only 2 supernodes)

>=(                )(               )(               )...(               )(                )

 

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3



Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long 
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were 

contracted before we were left with only 2 supernodes)

>=(                )(               )(               )...(               )(                )

= (        )(         )(        )...(         )(        )

 

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3
n-2

n

n-3

n-1

n-4

n-2

2

4

1

3



Karger’s Algorithm Analysis

● We note that Karger’s ALG returns the correct answer as long 
as none of the contracted edges are in the min-cut

● This can be represented by
○ Pr(final cut is min cut) = Pr(None of the min cut edges were 

contracted before we were left with only 2 supernodes)

>=(                )(               )(               )...(               )(                )

= (        )(         )(        )......    (         )(        )

 

1-
2

n
1-

2

n-1
1-

2

n-2
1-

2

4
1-

2

3
n-2

n

n-3

n-1

n-4

n-2

2

4

1

3
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● We note that Karger’s ALG returns the correct answer as long 
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Karger’s Algorithm Analysis

● We know that Karger’s succeeds with probability at least
● If we run Karger’s twice then the probability of success is:

Similarly, running Karger ‘k’ times yields a success probability of:

 



Karger’s Algorithm Analysis

● We can use the approximation that 1-p is about 
● We note that if we run this algorithm                        times then
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● To get this probability of success, we need to run this ALG 
 times, but we note we go through ‘m’ edges meaning the runtime 
of the ALG is O(                  ) or O(n²mlog(n))

 



Karger-Stein



Intuition

● In the beginning, low chance of contracting a min-cut edge 

● As we contract more edges, the ratio of “min cut edges” to “non 

min cut edges” becomes higher 

● However, as we contract more edges, there are less total edges

● Perhaps instead of contracting all the way, we choose some 

point where we stop contracting and just process the remaining 

graph more carefully



Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while ( // there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second 
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e
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probability of 
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edge is greater than 1/2
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Pseudocode

int FindMinCut(Edge[1,...,e], Vertex[1,...,v])

while ( // there are more than n - n/sqrt(2) edges

edge -> Choose edge randomly from the list

ContractEdge(edge)

Call FindMinCut on this graph twice and return the minimum of the two cuts

void ContractEdge(Edge e) // e.u = one vertex of the edge, e.v = second 
vertex

Create new vertex: SuperNode

Reattach all edges from e.u and e.v to SuperNode

Delete e

If we go through the 
math, we contract 
edges until the 
probability of 
contracting a min cut 
edge is greater than 1/2

Here, the probability of returning 
a min cut is 1/log(n) (the proof 
involves some induction)

To achieve an error probability of 
O(1/n) we need to run this 
algorithm log²(n) amount of times 
for a total runtime of O(n²log³(n))



Karger-Stein: Termination Vertex

● Denote ‘m’ as the vertex at which we terminate the contraction 
process (i.e. after contraction of this vertex, the probability of 
contracting a min-cut edge becomes more than ½ ).  We see:

Thus we terminate the contraction process at the n/sqrt(2) ‘th 
vertex. (To be more exact, you could terminate at n/sqrt(2) , but the 
asymptotic arguments are identical in either case, and for simplicity 
we’ll use the former)



Karger-Stein: Runtime

● We note that first we need to perform n-n/sqrt(2) contractions and then perform 
two iterations of Min-Cut on the remaining graph with n/sqrt(2) nodes . 

● Using an adjacency list implementation, the contractions take O(n²) to perform
● From here we need to perform this algorithm on the smaller graph yielding the 

following run-time

● From here, we use Master’s Theorem to yield a runtime of O(n²log(n))



Karger-Stein: Correctness

● We argue that probability of success is dependent on getting at least one success 
in one of these smaller graphs, which has a ½ chance of not having the min-cut 
already contracted (this argument comes from the fact that the last contracted 
edge ensures that further contracted edges have that probability to be a min-cut 
edge)

● With this argument, we can yield the following recurrence:

An inductive argument shows that P(n) >= 1/(n+2), and we finish with the argument 
that 1/O(n) >= O(log n). Thus, we need at least log(n) to get a constant probability of 
success and log(n)² iterations to get a 1-1/poly(n) probability of success , yielding a  
O(n²log³(n)) runtime
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