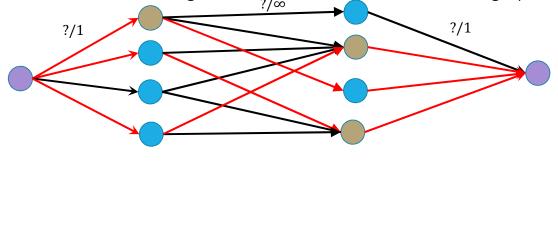
A (possibly) simple problem

Design an algorithm to find a maximum matching on a bipartite graph. (*hint:* what if the vertices on one side are chores and the other are housemates).

Algorithm for Bipartite Matching


Modify the (undirected) graph G into the network flow graph. Find a maximum flow, taking all edges of G which have flow. Is it correct?

The set of edges found should be a matching.

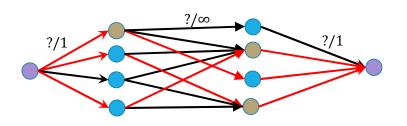
There should be no larger matching.

Vertex Cover

Here's a vertex cover (in gold). Find the min-cut (write residual graph) $?/\infty$

Vertex Cover

Is $A_T \cup B_S$ always a vertex cover? If so, how big is it?


There are 4 potential kinds of edges. Which kind is a problem for the vertex cover? Can they all exist?

 A_S to B_S

 A_S to B_T

 A_T to B_S

 A_T to B_T

