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Max Flow

We have a directed graph 𝐺, a source vertex 𝑠 and a target vertex 𝑡.

We have some thing (water or data packets) we have to send from 𝑠 to 
𝑡.

Every edge has a capacity, it can only handle so many.
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Flows

A flow moves units of water from 𝑠 to 𝑡.

Water can only be created at 𝑠 and only disappear at 𝑡.

And you cannot move more water than the capacity on any edge.
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Flows

A flow moves units of water from 𝑠 to 𝑡.

Water can only be created at 𝑠 and only disappear at 𝑡.

And you cannot move more water than the capacity on any edge.
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Finding Max Flows



Flows

The value or size of a flow is the net flow leaving 𝑠

Or, equivalently the net flow entering 𝑡.

Value of this flow is 5.
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Finding the Max Flow

Idea: find a path that we can push flow along.

Start from 𝑠, follow an edge with remaining capacity until you get to 𝑡

How much flow can you add? The minimum remaining capacity on any 
of the edges we used.

Greedy: Repeat this as much as you can. Does this work?
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Finding the Max Flow

Idea: find a path that we can push flow along.

Start from 𝑠, follow an edge with remaining capacity until you get to 𝑡

How much flow can you add? The minimum remaining capacity on any 
of the edges we used.
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Finding the Max Flow

We find a valid flow…but it might not be the maximum one.
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Finding the Max Flow

How would we fix what our first idea found?
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Finding the Max Flow

How would we fix what our idea found?
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We can send extra flow from 𝑠 and decrease the flow along another edge with existing 

flow

And we’ll still get a valid flow!



Finding the Max Flow

How would we fix what our first idea found?

s t

20/20

0/10

0/10

20/20

20/20 s t

20/20

10/10

10/10

20/20

10/20

What greedy found The true optimum



Fixing Our First Idea

When can we send flow in a direction?

When there is unused capacity OR

When there is flow going the other direction we can delete it.

Let’s update the graph to take that into account.

Have an edge weight demonstrate the changeable capacity (the 
“residual”)



An Example
Graph, with flow “Residual Graph”
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An Example

Graph, with flow “Residual Graph”
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Residual Graph

In general:

If the original graph has an edge (𝑢, 𝑣) of capacity 𝑐, and the flow sends  
𝑓𝑢,𝑣 along (𝑢, 𝑣):

Include (𝑢, 𝑣) in the residual with capacity 𝑐 − 𝑓𝑢,𝑣 as long as 𝑐 − 𝑓𝑢,𝑣 >
0 (if equal to zero, don’t include the edge)

Include (𝑣, 𝑢) [the edge going in the reverse direction] with capacity 𝑓𝑢,𝑣
as long as 𝑓𝑢,𝑣 > 0



Ford-Fulkerson Algorithm

While(flow is not maximum)

Run BFS in residual graph starting from 𝑠. 

Record predecessors to find an 𝑠, 𝑡-path

Iterate through path, finding 𝑐 minimum residual capacity on path.

Add 𝑐 to every edge on path in flow

Update residual graph



Ford-Fulkerson Algorithm

While(true)

Run BFS in residual graph starting from 𝑠. 

Record predecessors to find an 𝑠, 𝑡-path

If you don’t reach 𝑡, break. //otherwise you can still augment

Iterate through path, finding 𝑐 minimum residual capacity on path.

Add 𝑐 to every edge on path in flow

Update residual graph

Running Time:? 𝑂(𝐸) per iteration. Number of iterations?

Assuming 𝐸 ≥ 𝑉 (isolated vertices won’t 

affect the flow, so this is reasonable).



Ford-Fulkerson Algorithm

If we have all integer capacities at the start...

The residual graph will always have integer capacities.

Why? The minimum capacity on the first path is an integer.

So we subtract or add integers to the residual graph. 
And the result is more integers!

So in every iteration we add at least 1 unit of flow!



Ford-Fulkerson Algorithm

While(true)

Run BFS in residual graph starting from 𝑠. 

Record predecessors to find an 𝑠, 𝑡-path

If you don’t reach 𝑡, break. //otherwise you can still augment

Iterate through path, finding 𝑐 minimum residual capacity on path.

Add 𝑐 to every edge on path in flow

Update residual graph

Running Time:? 𝑂(𝐸) per iteration. Number of iterations? 𝑂(𝑓), where 𝑓 is the 
value of the maximum flow. Total 𝑂(𝐸𝑓)



Wait…𝑓?

We haven’t seen a running time before that depends on the answer

Normally, we want the running time directly in terms of the input.

There are tricks to speed up Ford-Fulkerson so you don’t take too long 
if 𝑓 is really big.

Some optional content about this at the end of this deck.



Minimum Cut



What’s a Cut?

For directed graphs (like we have here)

An (𝑠, 𝑡)-cut, is a split of the vertices into two sets (𝑆, 𝑇)

So that 𝑠 is in 𝑆, 𝑡 is in 𝑇, 
and every other vertex is in exactly one of 𝑆 and 𝑇.

The capacity of a cut (or size of a cut) is the capacity of the edges going 
from 𝑆 to 𝑇 (don’t count capacity from 𝑇 to 𝑆).



An Example

Graph, with flow “Residual Graph”
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We can’t get from 𝑠 to 𝑡 anymore in the residual graph.

We’re done! That’s a maximum flow. 

But…why?



An Example

Graph, with flow “Residual Graph”
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Cut is (𝑠, 𝑉 − 𝑠) (i.e. 𝑠 on one side, everything else on the other)

Edges from 𝑠 to everything else? Capacity 30
We can’t get more than 30 units of flow from 𝑠 to 𝑡. Because it 

all (simultaneously) must cross from one side to the other.



How Do We Know?

How do we know the algorithm is done? 

When we can’t we get from 𝑠 to 𝑡?

We’ve cut the (residual) graph. 
𝑠 and all the vertices you can reach from it on one side
and 𝑡 and all the vertices 𝑠 can’t reach on the other. 

Take a look at the edges spanning the cut in the original graph.

In our first graph, that capacity was equal to the value of the max flow.



Finding the min-cut

Maintain the residual graph.

When you search from 𝑠 and can’t get to 𝑡:

𝑠 and everything you can reach from 𝑠 is on one side of the cut

𝑡 and everything you can’t reach from 𝑠 is on the other side.



Another Example

We started lecture with this flow. 

What’s the residual graph? What’s the cut?
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Another Example
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Another Example

𝑠, 𝑢, 𝑣, 𝑤 , 𝑥, 𝑦, 𝑡 is the cut in the residual graph.

What edges span?

𝑣, 𝑥 , 𝑣, 𝑡 , 𝑤, 𝑥 , (𝑤, 𝑦)

Total capacity? 5. What’s the value of the flow? 5
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Max Flow-Min Cut Theorem

The value of the maximum flow from 𝑠 to 𝒕 is equal to 

the value of the minimum cut separating 𝒔 and 𝒕.

Max-Flow-Min-Cut Theorem

The full proof is VERY notation heavy. 

Focus on the words and intuition. The notation is there to support your 

intuition; the notation is not the main point.

We’re going to skip a few steps for the sake of minimizing notation. See 

any textbook for all the details.



Some notation (more formally)

Let 𝑓 be a flow.

For an edge 𝑒, 𝑓(𝑒) is the flow on 𝑒. 

val 𝑓 is the sum of flow leaving 𝑠 (equivalently entering 𝑡).

For a cut (𝐴, 𝐵), cap 𝐴, 𝐵 = σ𝑒:𝑒= 𝑢,𝑣 ,𝑢∈𝐴,𝑣∈𝐵 𝑐(𝑒)
i.e., the sum of the capacities on edges going from 𝐴 to 𝐵.

Direction matters!

Notice the capacity of a cut is independent of any particular flow. It’s a 
property of the original graph, not the flow or the residual graph.



Step 1: The Flow Goes Somewhere

Intuitively, the net-flow for every cut is the same as the net flow for the 
cut (𝑠, 𝑉 ∖ {𝑠}). 

Why? Well the flow has to go somewhere! It can only disappear at 𝑡. 

Why care? It’s a technical observation we’ll need later.

For every 𝑠-𝑡 cut, A, B :

val 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴 = ෍
𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵

𝑓 𝑒 −෍
𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵

𝑓 𝑒



Step 2: Cuts limit flows (‘weak duality’)

Cuts limit flows! Intuition: to get the flow to 𝑡 it has to “all get through” 
every cut. So you can’t have a flow of value more than any given cut.

Proof: 

val 𝑓 = 𝑓𝑜𝑢𝑡 𝐴 − 𝑓𝑖𝑛 𝐴 ≤ 𝑓𝑜𝑢𝑡 𝐴 = σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒

≤ σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑐 𝑒 = cap(𝐴, 𝐵)

Let 𝑓 be any 𝑠-𝑡 flow, and (𝐴, 𝐵) be any 𝑠-𝑡 cut. 

Then val 𝑓 ≤ cap(𝐴, 𝐵)



Step 3: Cuts are the only things that limit 
flows

Sketch:

Let 𝐴∗ be all the vertices reachable from 𝑠 in the residual graph, and 
𝐵∗ = 𝑉 ∖ 𝐴∗. 

Observe that (𝐴∗, 𝐵∗) is indeed an 𝑠-𝑡 cut. The only way to not be a cut 
is to have 𝑡 ∈ 𝐴∗. But we assumed 𝑡 was not reachable from 𝑠. 

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)



Step 3: Cuts are the only things that limit 
flows

(sub)-claim: If 𝑒 = (𝑢, 𝑣) such that 𝑢 ∈ 𝐴∗, 𝑣 ∈ 𝐵∗, then 𝑓 𝑒 = 𝑐(𝑒).

(i.e. edges going from 𝐴∗ to 𝐵∗ are saturated).

In the residual graph, we only don’t have a copy of 𝑒 if  𝑒 is saturated. If 
we did have the edge 𝑒, we would be able to reach 𝑣 from 𝑠, and it 
would be in 𝐴∗, not 𝐵∗. So 𝑒 must be saturated.

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

𝑢

𝑣



Step 3: Cuts are the only things that limit 
flows

(sub)-claim: If 𝑒 = (𝑣, 𝑢) such that 𝑢 ∈ 𝐴∗, 𝑣 ∈ 𝐵∗, then 𝑓 𝑒 = 0.

(i.e. edges going from 𝐵∗ to 𝐴∗ are unused).

In the residual graph, we add a copy of (𝑢, 𝑣) when there is any flow on 
(𝑣, 𝑢). If we did have the edge (𝑢, 𝑣), we would be able to reach 𝑣 from 
𝑠, and it would be in 𝐴∗, not 𝐵∗. So 𝑒 = (𝑣, 𝑢) must be unused.

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

𝑢

𝑣



Step 3: Cuts are the only things that limit 
flows

Put it together: What’s the value of the flow?

val 𝑓∗ = 𝑓𝑜𝑢𝑡 𝐴∗ − 𝑓𝑖𝑛 𝐴∗

= σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒 − σ𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵 𝑓 𝑒

= σ𝑒= 𝑢,𝑣 :𝑢∈𝐴,𝑣∈𝐵 𝑐 𝑒 − σ𝑒= 𝑣,𝑢 :𝑢∈𝐴,𝑣∈𝐵 0

= cap(𝐴∗, 𝐵∗)

Let 𝑓∗ be an 𝑠-𝑡 flow such that there is no 𝑠-𝑡 path in the residual graph.

Then there is a cut (𝐴∗, 𝐵∗) such that val 𝑓∗ = cap(𝐴∗, 𝐵∗)

Step 1’s lemma

Net is flow out minus flow in.

Last 2 slides

Definition of capacity.



Concluding The Theorem

Proof: Run Ford-Fulkerson, you’ll get a flow of value 𝑓∗ such that there 
is a cut of capacity 𝑓∗. There can be no larger flow and no smaller cut, 
as for all flows 𝑓 and all cuts (𝐴, 𝐵): val 𝑓 ≤ cap 𝐴, 𝐵 .

The value of the maximum flow from 𝑠 to 𝒕 is equal to 

the value of the minimum cut separating 𝒔 and 𝒕.

Max-Flow-Min-Cut Theorem



Isn’t This Cool?

Another instance where we prove a big theorem using an algorithm.

The max-flow min-cut theorem doesn’t mention an algorithm, but it can 
be proved via analyzing Ford-Fulkerson!



So What?

Max-flow and min-cut are each interesting algorithmic problems.

They were first studied in the 1950s

The U.S. military wanted to know how much the Soviets could ship on 
their rail network.

And also which rail lines they would target to disrupt the network.



So What?

Great quick check for if you’ve found the maximum flow (or min-cut).
Check the other and see if the value is the same!

We’ll see examples next time of max-flow used for modeling. In those 
cases the min-cut can be interpreted as a “barrier” to a good 
assignment.  

It’s also a nice example of duality

If you know what a “dual linear program” is – flows and cuts are dual 
LPs.



Applications



Applications of Max-Flow-Min-Cut

Max-Flow and Min-Cut are useful if you work for the water company…

But they’re also useful if you don’t.

The most common application is assignment problems.

You have jobs and people who can do jobs – who is going to do which?

Big idea:

Let one unit of flow mean “assigning” one job to a person.



Hey Wait…

Isn’t this what stable matching is for?

Stable matching is very versatile, and it lets you encode preferences.

Max-flow assignment is even more versatile on the types of 
assignments.

But there’s not an easy way to encode preferences. 



Example Problem

You and your housemates need to decide who is going to do each of 
the chores this week.

Some of your housemates are unable to do some chores.

Housemates: 1,2,3

Chores: 

Arrange furniture, clean the Bathroom, Cook dinner, do the Dishes

Housemate 1 is unable to arrange furniture, 2 is unable to cook.



Example Problem

Housemate 1 is unable to arrange furniture, 2 is unable to cook.

Vertex for each housemate and chore.

Edge if the housemate could do the chore
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Example Problem

Housemate 1 is unable to arrange furniture, 2 is unable to cook.

Vertex for each housemate and chore.

Edge if the housemate could do the chore
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Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.
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Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.
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Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person).

Every person needs to do at most two chores.
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Example Problem

Idea: Flow from 1 to 𝐵 means “make housemate 1 do chore B.”

Every chore needs to be done (by one person). 

Every person needs to do at most two chores.
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Example Problem

What are the capacities for the middle edges?

Could make them 1 (make sure you don’t get “two units of cooking”

All our requirements are already (implicitly) encoded. So could make them ∞
instead.
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Example Problem

Find a max flow…And read off the assignment!

Full color: 1 unit of flow, faded: 0 units of flow

1 cleans the bathroom and does the dishes, 2 arranges furniture, 3 cooks.
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Why are all of our constraints met?

Every chore gets done

No one does more than 2 chores

People only do chores they’re capable of



Why are all of our constraints met?

Every chore gets done

No one does more than 2 chores

People only do chores they’re capable of

A flow of value 4 sends one unit of flow through each of A,B,C,D (because the edges to 

𝑡 are all capacity 1), so a max-flow ensures if possible we’ll find an assignment.

Only 2 units of flow can go through any person vertex (because edges from 𝑠 to people 

are all capacity 2).

There is only an edge from a person to a chore if they can do that chore.



One More Requirement…

There’s another requirement we haven’t mentioned:

People only get “whole units” of chores
i.e. you don’t have two people each doing half of the cooking.

The max-flow approach guarantees this! As long as our requirements 
are integers (or ∞) as well.

Same logic as Friday’s lecture – Ford-Fulkerson will only add integers to 
the current flow.



Speeding Up Ford-Fulkerson



Speeding Up Ford-Fulkerson

Ford-Fulkerson is only slow if 𝑓 is big and we keep doing very small 
updates. 

If instead of finding any 𝑠, 𝑡 path you find a particular one (the one with 
the fewest edges, or the one that will lead to the biggest increase) you 
can guarantee you’ll do fewer iterations.
Each iteration will take a little longer to find the good path, but the tradeoff is often 
worth it.

In particular some algorithms end up with running times independent of 𝑓.

In practice, Ford-Fulkerson is usually fine! 

The fastest-known (theoretically) is Orlin’s algorithm: running time 
𝑂 𝑉𝐸 .


