
Linear Programming CSE 421 22AU

Lecture 19



Announcements

Still no discussion of the midterm yet (some people still need to take it).

We’ll release solutions once they’re all taken (early next week?)

HW6 (more DP!) is coming out tonight, due in one week.



Today

Everything we can cover about a topic in one day.

Linear programming!

They may come back at the end of the quarter (for approximation 
algorithms); goal today is just understand what they are and why they 
might be interesting.



Linear Programming

Used WIDELY in business and operations research.

Excel has a linear program solver.

A very expressive language for problem-solving

Can represent a wide-variety of problems, including some we’ve already 
seen.

Deep, beautiful theory…that we do not have time to cover.



Outline of LPs

What is a linear program?

A simple example LP

Computational Issues

An application – Vertex Cover on trees (again)

In a few weeks, we might return to LPs as a method of approximating 
NP-hard problems.



Example Problem

You’re laying down soil for a bunch of new gardens. You got a few big 
piles of soil delivered (more than enough to cover the gardens)
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Example Problem

What variables 
should we use?
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Example Problem

What variables 
should we use?

One for each edge 
(how much to 
move from a pile 
to a garden)

E.g. 𝑥𝐴,3 is how 
many units moved 
from 𝐴 to 3.
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Example Problem

What constraints 
are there on the 
variables?
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Example Problem

What constraints 
are there on the 
variables?
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Gardens each get enough soil:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4
𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

No anti-soil:

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗
Can’t overuse a pile:

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7
𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10



Example Problem

What’s the cost 
(in terms of the 
variables)?

Sum cost*var for 
all the variables

(𝑥𝐴,1⋅ 3 + 𝑥𝐴,2 ⋅ 4 + 𝑥𝐴,3 ⋅ 1.5) +

(𝑥𝐵,1⋅ 2 + 𝑥𝐵,2 ⋅ 1.5 + 𝑥𝐵,4 ⋅ 4.5) +
(𝑥𝐶,2 ⋅ 4 + 𝑥𝐶,3 ⋅ 2 + 𝑥𝐶,4 ⋅ 8)
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Full Definition

Minimize: (𝑥𝐴,1⋅ 3 + 𝑥𝐴,2 ⋅ 4 + 𝑥𝐴,3 ⋅ 1.5) + (𝑥𝐵,1⋅ 2 + 𝑥𝐵,2 ⋅ 1.5 + 𝑥𝐵,4 ⋅ 4.5) + (𝑥𝐶,2 ⋅ 4 + 𝑥𝐶,3 ⋅ 2 + 𝑥𝐶,4 ⋅ 8)

Subject To:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4

𝑥𝐴,2 + 𝑥𝐵,2 + 𝑥𝐶,2 ≥ 5

𝑥𝐴,3 + 𝑥𝐶,3 ≥ 1.5

𝑥𝐵,4 + 𝑥𝐶,4 ≥ 2.5

𝑥𝐴,1 + 𝑥𝐴,2 + 𝑥𝐴,3 ≤ 7

𝑥𝐵,1 + 𝑥𝐵,2 + 𝑥𝐵,4 ≤ 3

𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10

𝑥𝑖,𝑗 ≥ 0 for all 𝑖, 𝑗



A Linear Program

A linear program is defined by:

Real-valued variables

Subject to satisfying everything in a list of linear constraints

Maximizing or minimizing a linear objective function

A linear constraint is a statement of the form: ∑𝑎𝑖𝑥𝑖 ≤ 𝑐𝑖
where 𝑎𝑖 are constants, the 𝑥𝑖 are variables and 𝑐𝑖 is a constant.

A linear objective function is a function of the form: ∑𝑏𝑖𝑥𝑖
where 𝑏𝑖 are constants and the 𝑥𝑖 are variables.



Linear constraints

Can you write each of these requirements as linear constraint(s)?

Some of these are tricks…

𝑥𝑖 times 𝑥𝑗 is at least 5

5𝑥𝑖 is equal to 1

𝑥𝑖 ≤ 5 OR 𝑥𝑖 ≥ 7

𝑥𝑖 is non-negative.

𝑥𝑖 is an integer. 

Pollev.com/robbie



Linear constraints

Can you write each of these requirements as linear constraint(s)?

Some of these are tricks…

𝑥𝑖 times 𝑥𝑗 is at least 5

5𝑥𝑖 is equal to 1

𝑥𝑖 ≤ 5 OR 𝑥𝑖 ≥ 7

𝑥𝑖 is non-negative.

𝑥𝑖 is an integer. 

No way to represent 

5𝑥𝑖 ≤ 1 and −5𝑥𝑖 ≤ −1

No way to represent 

No way to represent 

𝑥𝑖 ≥ 0



What are we looking for?

A solution (or point) is a setting of all the variables

A feasible point is a point that satisfies all the constraints.

An optimal point is a point that is feasible and has at least as good of an 
objective value as every other feasible point. 



Example Problem
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Gardens each get enough soil:

𝑥𝐴,1 + 𝑥𝐵,1 ≥ 4
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Can’t overuse a pile:
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𝑥𝐶,2 + 𝑥𝐶,3 + 𝑥𝐶,4 ≤ 10
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A feasible point.

Objective: 55
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Example Problem
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Solving LPs

For this class, we’re only going to think about library functions to solve 
linear programs (i.e. we won’t teach you how any of the algorithms 
work)

The most famous is the Simplex Method – can be quite slow 
(exponential time) in the worst case. But rarely hits worst-case behavior. 

Very fast in practice. Idea: jump from extreme point to extreme point.

The Ellipsoid Method was the first theoretically polynomial time 
algorithm 𝑂(𝑛6) where 𝑛 is the number of bit needed to describe the LP 
(usually ≈ the number of constraints)

Interior Point Methods are faster theoretically, and starting to catch up 
practically. 𝑂(𝑛2.373) theoretically 



Another Question

Change the problem 

Instead of infinitely divisible dirt…

What if instead we’re moving whole unit things (the dirt is in bags we 
can’t open or we’re moving bikes or plants or anything else that can’t 
be split)

Or if we’re assigning people to shifts (can have 1/3 of a person on a 
shift)

Well, the constraints will change (your “demand” and “supplies” will be 
integers)  



Non-Integrality

Some linear programs only have optimal solutions that have some (or 
all) variables as non-integers (even with only integers in the objective 
function and constraints).

For dirt or water or anything arbitrarily divisible, no big deal!

For cell phones or bicycles…only possibly a big deal! 
In practice: if the optimal thing to manufacture 999,999.8 widgets per day, rounding 
up or down probably isn’t going to make a huge difference in your profits. 

But sometimes rounding isn’t ok…



What do you do if you need integers?

Integer Programs are linear programs where you can mark some 
variables as needing to be integers.

In practice – often still solvable (Excel also has a solver for these 
problems). But no longer guaranteed to be efficient.

Lots of theory has been done for when the optimum will be all integers. 
(MATH 407 or MATH 514)

But sometimes you get a fractional solution…what can you do?



A nicer example

Sometimes we can round fractional solutions into integral ones.

Minimum Weight Vertex Cover

We’ve seen how to solve the problem with DP on trees.

Let’s try it now with linear programming.

A set 𝑆 of vertices is a vertex cover if for every 

edge 𝒖, 𝒗 , 𝐮 is in 𝑺, 𝒗 is in 𝑺 or both are in 𝑺.



Vertex Cover LP

Write an LP for finding the minimum weight vertex cover

What are your variables, then how do you constrain them?

Let 𝑤(𝑢) be the weight for a vertex 𝑢. You can treat 𝑤(𝑢) as a constant.

A set 𝑆 of vertices is a vertex cover if for every 

edge 𝒖, 𝒗 , 𝐮 is in 𝑺, 𝒗 is in 𝑺 or both are in 𝑺.

Pollev.com/robbie



Vertex Cover LP

Minimize ∑𝑤 𝑢 ⋅ 𝑥𝑢

Subject to: 

𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸

0 ≤ 𝑥𝑢 ≤ 1 for all 𝑢.



Integrality

We need an integral solution

Having 
1

3
of 𝑢 in the set doesn’t make sense. 

How do we make the variables integral?



What do we do

Let’s try an example first 

Suppose your LP gave you this solution on this graph. How would you 
round it (i.e. convert to a valid vertex cover)?

1 11 1

𝑥 = 1/2 𝑥 = 1/2𝑥 = 1/2𝑥 = 1/2



What do we do

Increase 𝑥 for the purple vertices, and decrease 𝑥 for the gold vertices.

(at the same time at the same rate)

Every edge (in our example) has a purple and gold endpoint, so every 
constraint is still satisfied.

The objective (in our example) increases and decreases at the same rate.

So we still have an optimal (minimum) vertex cover

1 11 1

𝑥 = 1 𝑥 = 0𝑥 = 1𝑥 = 0



What do we do

Those vertices are done now! 

They’re integers – no need to change them from here on out. 

Ignore all the vertices where the variables are 0 or 1.

How do we handle the ones that are left…what if they’re not a nice 
simple path?



In General

If we have more than a path, we have to be careful when changing 
values.

If we decrease the value at 𝑢, we need to be sure every edge incident to 
𝑢 has its other vertex increase.

Otherwise an edge might be uncovered (we might not have a valid 
solution to the LP anymore).

So every neighbor of a gold vertex must be purple.

…does that sound familiar?



In General…

2-color the graph (call the vertices “purple” or “gold”)

Increase all the purple vertices by some value 𝛿

And decrease all the gold vertices by the same value 𝛿

Choose 𝛿 so that we set at least one variable to 0 or 1 (but don’t move 
any variables outside the 0,1 range allowed. 

Those vertices that just got set to 0 or 1 can be deleted. Start over with 
the remaining graph. 



In General…

But wait!

What if we’re increasing the objective value? (i.e. what if there’s more 
weight on the purple vertices than gold). 

We won’t increase:

If we were, then switch purple and gold. Then we’d be decreasing the 
objective…but we were at the minimum!

So we’re really getting a minimum vertex cover.



Running Time

Regardless of which LP solver we’re using, 𝑛 or fewer BFSs is going to 
be less than the LP solver (in big-O terms)

We won’t ask you to precisely analyze running times of LPs (depends a 
lot on which library you’re using, whether you have more variables or 
constraints, whether your constraints have lots of variables,…)

We will check that it’s polynomial time: if you have polynomially many 
variables and constraints, then it’s polynomial time.



Non-Bipartite

We needed the graph to be bipartite to be able to 2-color it.

What if our original graph isn’t bipartite?
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Summary

With dynamic programming, we could find the minimum weight vertex 
cover on trees.

With linear programming, we can find the minimum weight vertex cover 
on any bipartite graph (trees and other graphs!).

But LPs don’t always give you a fractional solution that’s helpful for 
finding an integral one. On non-bipartite graphs, we’ll need to do 
something else. (More in a few weeks). 


