
Graph DP
Mid-Quarter Summary

CSE 421 22AU

Lecture 17



Ordering

Instead of 𝑑𝑖𝑠𝑡(𝑣), we want

𝑑𝑖𝑠𝑡(𝑣, 𝑖) to be the length of the shortest path from the source to 𝑣 that 
uses at most 𝑖 edges. 

𝑑𝑖𝑠𝑡 𝑣, 𝑖 = ൞

0 if 𝑖 = 0 and 𝑣 is the source
∞ if 𝑖 = 0 and 𝑣 is not the source
min min

𝑢: 𝑢,𝑣 ∈𝐸
{𝑑𝑖𝑠𝑡 𝑢, 𝑖 − 1 + 𝑤 𝑢, 𝑣 } , 𝑑𝑖𝑠𝑡 𝑣, 𝑖 − 1 o/w



Sample calculation

Vertex\𝒊 0 1 2 3 4 5

S 0 0 0 0 0 0

A ∞ 3 3 3 3 3

B ∞ 8 8 8 8 8

C ∞ ∞ 9 9 9 9

D ∞ ∞ ∞ 11 11 11

V ∞ ∞ ∞ 14 12 12

c v
a

s

db8

3
6

3 2

4

1

5



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to ??)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor 𝑑𝑖𝑠𝑡 𝑣, 𝑖 = ൞

0 if 𝑖 = 0 and 𝑣 is the source
∞ if 𝑖 = 0 and 𝑣 is not the source

min min
𝑢: 𝑢,𝑣 ∈𝐸

{𝑑𝑖𝑠𝑡 𝑢, 𝑖 − 1 + 𝑤 𝑢, 𝑣 } , 𝑑𝑖𝑠𝑡 𝑣, 𝑖 − 1



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

The shortest path will never need more than 𝑛 − 1 edges

(more than that and you’ve got a cycle)



Pseudocode

Initialize source.dist[0]=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex v) //what order?

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

Only ever need values from the previous iteration

Order doesn’t matter!!



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //any order

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

Graphs don’t usually have easy access to their incoming 

edges (just the outgoing ones)



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

for(every vertex v) //any order

v.dist[i] = v.dist[i-1]

for(each incoming edge (u,v))//hmmm

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

But the order doesn’t matter – as long as we check 

every edge, the processing order is irrelevant.

So if we only have access to outgoing edges…



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor



Pseudocode

Initialize source.dist[0]=0, u.dist[0]=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist[i-1]+weight(u,v)<v.dist[i])

v.dist[i]=u.dist[i-1]+weight(u,v)

endIf

endFor

endFor

endFor

We don’t really need all the different values…

Just the most recent value. 



Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

set u.dist[i] to u.dist[i-1] for every u

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor

We don’t really need all the different values…

Just the most recent value. 



Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor
We don’t really need all the different values…

Just the most recent value. 



A Caution

We did change the code when we got rid of the indexing

You might have a mix of dist[i],dist[i+1],dist[i+2],… at the 
same time.

That’s ok! 

You’ll only “overwrite” a value with a better one. 

And you’ll eventually get to 𝑑𝑖𝑠𝑡(𝑢, 𝑛 − 1)

After iteration 𝑖, 𝑢 stores 𝑑𝑖𝑠𝑡(𝑢, 𝑘) for some 𝑘 ≥ 𝑖. 



Exit early

If you made it through an entire iteration of the outermost loop and 
don’t update any 𝑑𝑖𝑠𝑡()

Then you won’t do any more updates in the next iteration either. You 
can exit early. 

More ideas to save constant factors on Wikipedia (or a textbook)



Laundry List of shortest pairs (so far)

Algorithm Running Time Special Case Negative edges?

BFS 𝑂(𝑚 + 𝑛) ONLY unweighted 

graphs

X

Simple DP 𝑂(𝑚 + 𝑛) ONLY for DAGs X

Dijkstra’s 𝑂(𝑚 + 𝑛 log 𝑛) X

Bellman-Ford 𝑂(𝑚𝑛) ???



Pseudocode

Initialize source.dist=0, u.dist=∞ for others

for(i from 1 to n-1)

for(every vertex u) //any order

for(each outgoing edge (u,v))//better!

if(u.dist+weight(u,v)<v.dist)

v.dist=u.dist+weight(u,v)

endIf

endFor

endFor

endFor

What happens if there’s a negative cycle?



Negative Cycles

The fastest way from 𝑎 to 𝑒

(i.e. least-weight walk) isn’t 
defined!

No valid answer (−∞)

Negative edges, but only non-
negative cycles

Dijkstra’s might fail

But the shortest path IS defined.

There is an answer

Negative Edges

c e
a

db

6

3 2

-8

1

5

c e
a

db

6

3 2

-3

1

5



Negative Cycle

Vertex\𝒊 0 1 2 3 4 5 6

S 0 0 0 0 0

A ∞ 3 3 3 3

B ∞ 8 8 8 5

C ∞ ∞ 9 9 9

D ∞ ∞ ∞ 1 1

V ∞ ∞ ∞ 14 2

c v
a

s

db8

3
6

3 -8

4

1

5

Pollev.com/Robbie



Negative Cycles

If you have a negative length edge: Dijkstra’s might or might not give 
you the right answer. 

And it can’t even tell you if there’s a negative cycle (i.e. whether some of 
the answers are supposed to be negative infinity)

For Bellman-Ford:

Run one extra iteration of the main loop– if any value changes, you have 
a negative length cycle. Some of the values you calculated are wrong.

Run a BFS from the vertex that just changed. Anything you can find 
should have −∞ as the distance. (anything else has the correct [finite] 
value).

If the extra iteration doesn’t change values, no negative length cycle.



Laundry List of shortest pairs (so far)

Algorithm Running Time Special Case only Negative edges?

BFS 𝑂(𝑚 + 𝑛) ONLY unweighted 

graphs

X

Simple DP 𝑂(𝑚 + 𝑛) ONLY for DAGs X

Dijkstra’s 𝑂(𝑚 + 𝑛 log 𝑛) X

Bellman-Ford 𝑂(𝑚𝑛) Yes!



All Pairs Shortest Paths



All Pairs

For Dijkstra’s or Bellman-Ford we got the distances from the source to 
every vertex.

What if we want the distances from every vertex to every other vertex?



All Pairs

For Dijkstra’s or Bellman-Ford we got the distances from the source to 
every vertex.

What if we want the distances from every vertex to every other vertex?

Why? Most commonly pre-computation.

Imagine you’re google maps – you could run Dijkstra’s every time 
anyone anywhere asks for directions…

Or store how to get between transit hubs and only use Dijkstra’s locally.



Another Recurrence

𝑑𝑖𝑠𝑡 𝑣 = ൝
0 if 𝑣 is the source

min
𝑢: 𝑢,𝑣 ∈𝐸

𝑑𝑖𝑠𝑡 𝑢 + 𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 otherwise

Another clever way to order paths.

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate 
nodes are 1,2, … , 𝑖



Another Recurrence

Put the vertices in some (arbitrary) order 1,2, … , 𝑛

Let 𝑑𝑖𝑠𝑡(𝑢, 𝑣, 𝑖) be the distance from 𝑢 to 𝑣 where the only intermediate 
nodes are 1,2, … , 𝑖

dist 𝑢, 𝑣, 𝑖 =

𝑤𝑒𝑖𝑔ℎ𝑡 𝑢, 𝑣 if 𝑖 = 0, (𝑢, 𝑣) exists
0 if 𝑖 = 0, 𝑢 = 𝑣
∞ if 𝑖 = 0, no edge (𝑢, 𝑣)

min dist 𝑢, 𝑖, 𝑖 − 1 + dist 𝑖, 𝑣, 𝑖 − 1 , dist(𝑢, 𝑣, 𝑖 − 1) otherwise



Pseudocode
dist[][] = new int[n-1][n-1]

for(int i=0; i<n; i++)

for(int j=0; j<n; j++)

dist[i][j] = edge(i,j) ? weight(i,j) : ∞

for(int i=0; i<n; i++)

dist[i][i] = 0

for every vertex 𝑟

for every vertex 𝑢

for every vertex 𝑣

if(dist[u][r] + dist[r][v] < dist[u][v])

dist[u][v]=dist[u][r] + dist[r][v]

“standard” form of the “Floyd-Warshall” algorithm. Similar to Bellman-Ford, you can 

get rid of the last entry of the recurrence (only need 2D array, not 3D array).



Running Time

𝑂 𝑛3

How does that compare to Dijkstra’s?



Running Time

If you really want all-pairs…

Could run Dijkstra’s 𝑛 times…

𝑂(𝑚𝑛 log 𝑛 + 𝑛2 log 𝑛)

If 𝑚 ≈ 𝑛2 then Floyd-Warshall is faster!

Floyd-Warshall also handles negative weight edges.

If 𝑑𝑖𝑠𝑡 𝑢, 𝑢 < 0 then there’s a negative weight cycle.



Takeaways

Some clever dynamic programming on graphs.

Which library to use (at least asymptotically)?

Need just one source?
Dijkstra’s if no negative edge weights. 

Bellman-Ford if negative edges.

Need all sources?
Flord-Warshall if negative edges or 𝑚 ≈ 𝑛2

Repeated Dijkstra’s otherwise

These are all asymptotics! For any “real-world” problem prefer running 
actual code to see which is faster.



DP Context



DP history

So…why is it called “dynamic programming?”

“programming” is an old-timey meaning of the word.

It means “scheduling”

Like a conference has a “program” of who speaks where when.
Or a television executive decides on the nightly programming (what 
show airs when).



DP history

So…dynamic?

The phrase “dynamic programming” was popularized by Richard 
Bellman.

He was a researcher, funded by the U.S. military….

But the Secretary of Defense [as Bellman tells it] hated research. And 
hated math even more.

So Bellman needed a description of his research that everyone would 
approve of.



DP history

Dynamic

Is actually an accurate adjective – what we think is the best option 
(include/exclude) can change over time.

Even better

“It’s impossible to use the word ‘dynamic’ in a pejorative sense”

“It was something not even a Congressman could object to.”



Techniques So Far



What have we seen so far?

Stable Matchings

Graph Search
BFS/DFS

Graph modeling

Greedy Algorithms

Divide and Conquer

Dynamic Programming



Stable Matchings

Modeling matters! 
It’s better to be a proposer than a chooser!

Algorithms can be used to prove ‘non-computational’ facts
Stable Matchings always exist is easiest to prove by saying “here’s how to find one.”

Reductions
Sometimes there’s a clever way to use an existing library (we’ll need these a lot later 
in the quarter).



Graph Search

BFS and DFS search through a graph differently
So you can adapt them to solve different problems!

Use libraries

Finding SCCs and Topological sorting are “almost free” preprocessing

2-Coloring can be performed in linear time.



Greedy

Code is easy; proofs are hard.

Generating examples is extremely important.

To frame your thinking for proofs
Greedy stays ahead

Exchange argument

Structural result



Divide and Conquer

Trust the recursion.

Don’t be afraid to change what the recursive call gives you!
Add extra parameters!

State in English what the recursive call gives you.

In your “combine” step, make sure you’re beating baseline!



Dynamic Programming

Focus on solving the problem recursively; everything else is (mostly) 
formulaic once you’ve done that.

Write exactly the problem you’re solving in English.

It’s better to get down a “guess” at the problem and then see where you 
get stuck.
Don’t be afraid to add a second recurrence or extra parameters.

Don’t try to cleverly figure out which option is best. Try them all.
The magic of recursion tells you which is best for a particular situation.



How To Approach Problems

In section, we’ve made you follow these steps:

1. Read the problem carefully (make sure you know what problem you’re 
actually solving)

2. Make some sample inputs/outputs

3. Set a “baseline.”

4. Then try to generate the algorithm.

It’s hard to take the time to do these in an exam, but at least make sure 
you do #1. Solving the wrong problem is not good for test-taking.


